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On the Brody hyperbolicity
Abdessami Jalled

(150 Pl. du Torrent, 38400 Saint-Martin-d’Hères, Office 178)
E-mail: Abdessami.jalled@grenoble-inp.fr

Definition 1. Let H1, ..., Hm, m ⩾ 2n, be a configuration of 2n hyperplanes in general position
of CP n. We call diagonal, the line passing through the two points ∩i∈IHi and ∩j∈JHj, where
|I| = |J | = n and I ∩ J = ∅. Here |I| denotes the cardinal of I.
Theorem 2. Let H1, ..., H2n be (2n) projective hyperplanes in general position in CP n. Then there
are 1

2
Cn

2n diagonals ∆1, ....,∆ 1
2
Cn

2n
such that for any non constant holomorphic curve f : C −→

CP n \ ∪2n
i=1Hi, there exists kf ∈ {1, ..., 12Cn

2n} such that f(C) ⊂ ∆kf .

Corollary 3 (This is how we prove the Green Theorem). Any holomorphic curve that lies in the
complement of 2n+ 1 hyperplanes in general position in CP n, is constant.
Theorem 4. (E. Borel) Let H = ∪4

i=1Hi a collection of complex projective lines in general position
in CP 2. Then any non constant map f : C → CP 2 \ H, lies in one of the diagonales (∆i)i=1,2,3.
Where ∆i are the projective lines passing each through a double points of H.

Theorem 5. Let L1, L2, L3, L4 and L5 complex hyperplanes in general position in C3, then for
every holomorphic curve G : C→ C3 such that G(C) ∩ (∪5i=1Li) = ∅, there exists a complex line L
in C3 such that G(C) ⊂ L. Moreover, the complementary of five complex lines in C3 is not Brody
hyperbolic. (This result is also true in higher dimension)
Remark: The projection of G into the complex projective space CP 2 is constant.

Definition 6. For n ⩾ 3 and L = (L1, ..., Ln) a family of real subspaces of R6 of real codimension
2. Then we say that L is in general position if for every 3-tuple (i, j, l) of distinct integers i, j, l ∈
{1, ..., n},

SpanR(L
⊥
i , L

⊥
j , L

⊥
l ) = R6.

We note that if L is a real subspace in R6, then L⊥ denotes the orthogonal complement of L.
Theorem 7. Let L1, L2, L3, L4 be four complex lines in C3. Then there exists a real subspace L of
R6, of real dimension four, such that (L,Li, Lj) are in general position for all j 6= i, j, i ∈ {1, ..., 4},
and there exists a non constant holomorphic curve g : C→ C3, such that

g(C)
⋂( 4⋃

i=1

Li
⋃

L
)
= ∅
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ie, the complementary of this configuration in C3 is not Brody hyperbolic.
Remark: The projection of G into the complex projective space CP 2 is not constant.

Here π denotes the canonical projection from C3 \ {0} into CP 2 and π(g) := π ◦ g. Notice that π(g)
is well-defined since g(C) ⊂ C3 \ {0}.
Theorem 8. The complementary of five real subspaces L̃i, i = 1 . . . 5 of real dimension 5 in C3 is
Brody hyperbolic. That is to say that any holomorphic map g : C→ C3 \ ∪5

i=1L̃i is constant.
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On the mapping of surfaces of Euclidean spaces
Najaf Aliyev

(Baku State University, Academic Zahid Khalilov str.33, AZ 1148, Azerbaijan)
E-mail: nacafaliyev@bsu.edu.az

Fuad Aliyev
(Azerbaijan Diplomatic Academy, Ahmadbey Aghaoghlu str. 61, Baku, AZ 1008, Azerbaijan)

E-mail: fnaaliyev@ada.edu.az

Let us consider the Euclidean spaces E4 and E4 as completely orthogonal subspaces in the proper
Euclidean space E8, having one common point O. Let V2 and V 2 be smooth surfaces in E4 and E4

respectively.
We will study differentiable one-to-one mapping T of a domain Ω ⊂ V2 onto a domain
Ω ⊂ V 2. If a point X1 inscribes a domain Ω, and X2 = T (X1) ⊂ Ω, then a point X with radius

vector−→
X =

−→
X 1 +

−→
X 2 inscribes a certain two-dimensional surface V ∗

2 , called the graph of the mapping
T [1].
In [2], [3], [4], it is shown that in this case, each surface V2 and V 2, there arise orthogonal sets
δ2 ⊂ V2 and δ2 ⊂ V 2.

The following theorems proved
Theorem 1. The sets δ2 and δ2 correspond to the mapping T if and only if one of the following
conditions is satisfied:
1) the sets δ2 and δ2 coincide with the base of the mapping T ,
2) the mapping T is conformal.

Theorem 2. If the surfaces V2 and V 2 carry conjugate sets and these sets correspond, then the
sets δ2 and δ2 serve as the basis of the mapping T if and only if the condition.

−→
C 12

[(
C4

12γ
1i − C3

12γ
2i
)−→e 4+i

]
= 0

is satisfied.
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Theorem 3. The base of the mapping T harmonically separates the conjugate sets Σ2 and Σ2

if and only if condition −→C 12 (C
3
12
−→e 1 − C4

12
−→e 2) = 0 is satisfied.

Theorem 4. A pair of surfaces V2, V 2, carrying conjugate sets corresponding to the mapping T
is determined by specifying four functions of two arguments.
Note that an arbitrary pair of surfaces V2, V̄2, is defined by specifying six functions of two arguments
(two functions for each of the surfaces V2 ⊂ E4 and V̄2 ⊂ E4- and two functions for specifying the
mapping T : Ω→ Ω̄).
Theorem 5. If the surfaces V2 and V 2 carry orthogonal conjugate networks and these networks
correspond, then the networks δ2 and δ2 correspond in this mapping T if and only if one of the
following conditions is satisfied:
1) C3

12 = 0, C4
12 6=0 ( or C4

12 = 0, C3
12 6=0). Here C3

12, C4
12 do not vanish simultaneously, since

rang
∥∥Cn

ij
∥∥ = 3. Geometrically, this means that the vector −→C 12 is either collinear with the vector

−→E 3, or with −→E 4.
2) The mapping T is conformal. Considering that the vector −→C 12 is the following decomposition.

−→
C 12 =

−→m −−→m
we have
Corollary 6. Let Σ2 = T (Σ2) and let the sets Σ2 and Σ2 be orthogonal and conjugate. The sets
Σ∗

2 of the graph V ∗
2 is a set of curvature lines with respect to the mean normal if and only if

−→µ ∗ · −→m = −→µ ∗ · −→m
where −→µ ∗ is the mean normal vector of the surface V ∗

2 .
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Deformations, fundamental groups, and Zariski pairs in
classification of algebraic curves and surfaces

Meirav Amram
(SCE, Israel)

E-mail: meiravt@sce.ac.il

Classification of algebraic surfaces and curves has been a major mathematical problem over the
years. In the talk I will focus on both studies. The background and some new results will be
presented, especially by using topological and algebraic methods in geometry.
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Classification of algebraic surfaces. : Studying how algebraic surfaces change into unions of
planes is a fascinating area of research. These changes, or deformations, help to understand the
geometry and topology of these surfaces, especially by looking at singular points and invariants like
fundamental groups. Planar and non-planar deformations of algebraic surfaces involve breaking
down these surfaces into unions of planes. Non-planar deformations are more complex than the
planar ones because they involve the connection of edges to form high multiple singularities. Both
types are crucial for understanding the geometry and topology of these surfaces, with applications
in algebraic geometry, topology, and physics.

In the following figure we can see one example of a non-planar deformation, one of many that are
of great interest to mathematicians in topology and algebraic geometry. If we glue the two pieces
in the figure along their external edges, we will get a non-planar deformation, with complicated
singularities along this gluing.
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We can compute the fundamental group G of the complement of the branch curve of an algebraic
surface. The fundamental group is an invariant of the surface. Via the deformation, we can derive
the dual graph that represents the group and contributes a lot of information to the classification.

If group G is complicated, we can compute the fundamental group of the Galois cover of the
surface, and it is an invariant of the surface as well.

We give new results in this area of research; selected references are [1]-[6].
Classification of algebraic curves. : We classify algebraic curves using Zariski pairs, which are
pairs of curves that have the same combinatorial structure but differ in their topological properties.
By studying these pairs, we gain insight into the unique characteristics of each curve.

Our research focuses on line arrangements and conic-line arrangements. The deformations of
these arrangements are interesting objects by themselves, and the study helps us to see how different
changes in the curves affect the fundamental groups related to them. The computations give us a
better understanding of their underlying topology.

Concerning line arrangements: Zariski pairs of line arrangements cannot be in the same compo-
nent of the moduli space. This is a powerful tool to study the moduli space of line arrangements.

Concerning conic-line arrangements: there are no Zariski pairs of degree ≤ 5. For degree 7, there
are already some interesting examples of Zariski pairs.

We will see the correspondence between curves and fundamental groups and understand the
rules given by Zariski pairs.

In the following figure we give an example of a Zariski pair of degree 8. Such an example will
be explained later, among other examples from [7]-[10].
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Homogeneous homoderivations on graded associative rings
Mehsin Jabel Atteya

(Mustansiriyah University, College of Education, Department of Mathematics, Falastin St.,
Baghdad, Iraq.)

E-mail: mehsinatteya88@uomustansiriyah.edu.iq

As a fact, the concept of homogeneous derivations was introduced by Kanunnikov (2018)[1]. Let
Λ be a G-graded ring. An additive mapping κ : Λ→ Λ is called homogeneous derivation if:

• κ(xy) = κ(x)y + xκ(y) for all x, y ∈ Λ.
• κ(r) ∈ H(Λ) for all r ∈ H(Λ).

While the year 2000 came, a classical definition concerning of homoderivation was delivered via
article [2], where an additive mapping is a homoderivation concerning Λ like from Λ to Λ, where Λ
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is a ring. In other expressions, (from a ring to itself) satisfy κ(xy) = κ(x)κ(y)+κ(x)y+xκ(y) where
x and y in Λ. Every homogeneous derivation is a derivation. However, the converse statement is
not true, as there exist derivations that are not homogeneous.

Over the last 70 years, researchers have been interested in understanding the structure and
commutativity of ring R using specific types of mappings called derivations. Various authors have
widely studied this topic. Like [3]. In 1957, the study of commutativity of prime rings with
derivations was initiated. Since then, the relationship between the commutativity of rings and the
existence of specific types of derivations has attracted many researchers. The main result in this
context is that a prime ring R with a nonzero centralizing derivation d must be a commutative ring.
Graded rings have various applications in geometry and physics, and appear in various contexts,
from elementary to advanced levels. Based on the rich heritage of ring theory, many researchers
have attempted to extend and generalize various classical results to graded settings.

In this paper, Λ represents an associative ring with the center Z(Λ), and G is an abelian group
with identity element e. For x, y ∈ Λ, we write [x, y] for Lie product xy − yx and for a nonempty
subset S for Λ, we write CΛ(S) = {x ∈ Λ | [x, S] = 0} for the centralizer of S in Λ. A ring Λ is G-
graded if there is a family {Λg, g ∈ G} of additive subgroups Λg of (Λ,+) such that Λ =

⊕
g∈G ∈ Λg

and ΛgΛh ⊆ Λgh for every g, h ∈ G. The additive subgroup Λg called the homogeneous component
of Λ. The set H(Λ) = ∪g∈GΛg is the set of homogeneous elements of Λ.

Let η be a right (resp. left) ideal of a graded ring Λ. Then η is said to be a graded right (resp.
left) ideal if η =

⊕
g∈G ηG, where ηg = (η ∩ Λg) for all g ∈ G. That is, for x ∈ η, x =

∑
g∈G xg,

where xG ∈ η for all g ∈ G. A graded ring Λ is said to be gr-prime (gr-semiprime) if aΛb = {0}
implies a = 0 or b = 0 (if aΛa = {0} then a = 0), where a, b ∈ H(Λ). Moreover, a graded ring Λ is
a gr-semiprime ring if the intersection of all the gr-prime ideals is zero.

Here, we establish interesting results related to homogeneous homoderivations. We prove the
existence of a non-trivial family of homoderivations that are not homogeneous on graded rings.
Furthermore, based on homogeneous homoderivations, we extend certain existing significant results
in the context of prime (resp. semiprime) rings to gr-prime (resp. gr-semiprime) rings.
Theorem 1. Let Λ be a gr-semiprime ring with a 2-torsion free property. If κ is a homogeneous
homoderivation and c ∈ H(Λ) such that [c, κ(x)] ∈ Z(Λ) for all x ∈ Λ, then κ = 0 or c ∈ Z(Λ).
Theorem 2. Let Λ be a 2-torsion free gr-semiprime ring with a 2-torsion free property and gr-
prime ideal η be a gr-prime ideal Λ. Suppose κ1 and κ2 be homoderivations of Λ. Suppose that
at least one of κ1 and κ2 is homogeneous and their composition κ1κ2 is a derivation. Then either
κ1 ∈ η or κ2 ∈ η.
Proposition 3. Let Λ be a gr-prime ring and η a non zero graded left ideal of Λ. If κ is a non
zero homogeneous homoderivation of Λ, then its restriction on η is non zero.
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Thomae formulas in application to finding reality
conditions for integrable hierarchies

Julia Bernatska
(University of Connecticut)

E-mail: julia.bernatska@uconnn.edu

Spectral curves of the KdV, sine-Gordon, and mKdV hierarchies all belong to the family of
hyperelliptic curves of the form

C : f(x, y) ≡ −y2 + P(x) ≡ −y2 + x2g+1 +
∑2g

i=1 λ2i+2x
2g−i = 0, (1)

where the genus g of C coincides with the number of gaps of a hamiltonian systems in the hierarchy.
Parameters λ = {λ2i+2}2gi=1 serve as integrals of motion.

Let Jac(C)=Cg/{ω, ω′} be the Jacobian variety of C with respect to the lattice generated by
columns of not normalized period matrices ω = (ωi,j), ω′ = (ω′

i,j) defined by

ωi,j =

∫

aj

du2i−1, ω′
i,j =

∫

bj

du2i−1, where du2i−1 =
xg−idx
−2y .

Second kind period matrices η = (ηi,j), η′ = (η′i,j) are obtained from the second kind differentials
associated with the first kind differentials du = (du1, du3, . . . , du2g−1)

t defined above.
Each curve C is uniformized by means of the multiply periodic ℘-functions

℘i,j(u) = −
∂2 logσ(u)
∂ui∂uj

, ℘i,j,k(u) = −
∂3 logσ(u)
∂ui∂uj∂uk

,

which generalize the Weierstrass ℘-function to higher genera. The sigma function is defined by
σ(u) = C exp

(
−1

2
utκu

)
θ[K](ω−1u;ω−1ω′), (2)

see [1, Eq.(2.3)], where [K] is the characteristic of the vector K of Riemann constants, and κ =
ηω−1.

The mentioned completely integrable equations have the following finite-gap solutions, b ∈ R,
ci ∈ R,
KdV wt=6wwx+wxxx w(x, t)=−b℘1,1(u), u=−b(x, t, c5, . . . , c2g−1)

t+ωK,

sine-Gordon φt,x=4 sinφ φ(x, t)= ı log
(
−λ−1/2

4g ℘1,2g−1(u)
)
, u= ıb(x, c3, . . . , c2g−3, t)

t+ωK,

sinh-Gordon φt,x=−4 sinhφ φ(x, t)= log
(
−λ−1/2

4g ℘1,2g−1(u)
)
, u= b(x, c3, . . . , c2g−3, t)

t+ωK,

mKdV wt=6ςw2wx−wxxx w(x, t)=−b℘1,1,2N−1(u)

2℘1,2N−1(u)
, u= b(x,−4b2t, c5, . . . , c2g−1)

t+ωK.

In the case of defocusing mKdV, assign ς = 1, b = b. In the case of focusing mKdV, ς = −1,
b = ıb.

The reality conditions require all solutions to be real-valued and bounded functions of real
variables x, and t. That is, the reality conditions are specified by the choice of a path in Jac(C)
where a solution of the system in question is real-valued. An answer to this question is obtained
from the analysis of values of the σ-function at half-periods on the spectral curve C.

Recall, that after separation of variables, a g-gap hamiltonian system in one of the mentioned
hierarchies splits into g one-particle systems, whose phase trajectories are determined by (1),
namely by f(xi, yi)= 0, i=1, …, g, where xi serves as the coordinate, and yi as the momentum.
Thus, −P(x) serves as the potential, and so roots of P serve as turn points. Therefore, the Abel
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image of a divisor composed from g points, one on each one-particle trajectory, goes through
half-periods. For the purpose of a bounded solution, these half-periods should be non-singular.

The Thomae formulas introduce a connection between null values of the theta function with
characteristics (or its first non-vanishing derivative), called theta constants (or theta derivatives),
on the one hand, and x-coordinates of the branch points which produce half-periods corresponding
to the characteristics, on the other hand. Instead of theta constants and theta derivatives we use
values of the σ-function (or its first non-vanishing derivative) at half-periods. Each half-period is
represented by a partition on the set of indices of branch points.

Let S = {0, 1, 2, . . . , 2g + 1} be the set of indices of all branch points, and 0 stands for infinity.
A partition I0 ∪ J0 = S, cardI0 = cardJ0 = g + 1, represents a characteristic of multiplicity 0,
or an even non-singular characteristic, which describes a half-period Ω0 such that σ(Ω0) 6= 0. A
partition Im ∪ Jm = S, cardIm = g + 1 − 2m, cardJm = g + 1 + 2m, represents a characteristic
of multiplicity m, which describes a half-period Ωm such that ∂mu1σ(Ωm) 6=0 and ∂ru1σ(Ωm)= 0 if
0⩽ r<m. All half-periods represented by partitions Im ∪ Jm = S with m > 0 are called singular,
due to ℘-functions have singularities at such half-periods.

In the fundamental domain of Jac(C), there exist 22g half-periods. In the case of a real curve (with
real parameters λ), these half-periods form 2g lines parallel to the real axes, and 2g lines parallel
to the imaginary axes, each line contains 2g half-periods. It is proven, see [2, Propositions 2, 3], [3,
Theorem 4], that there exists only one line parallel to the real axes, and only one line parallel to
the imaginary axes, which contains no singular half-periods. Any of the two lines can serve as the
domain for finite-gap solutions of the integrable systems.

Further, the reality conditions require real values of solutions, that is for s ∈ Rg

KdV ℘1,1(s+ ωK) ∈ R,
sine-Gordon |℘1,2g−1(ıs+ ωK)|2 = λ4g,
sinh-Gordon |℘1,2g−1(s+ ωK)|2 = λ4g,
defocusing mKdV ℘1,1,2N−1(s+ ωK)

℘1,2N−1(s+ ωK)
∈ R,

focusing mKdV ı
℘1,1,2N−1(ıs+ ωK)

℘1,2N−1(ıs+ ωK)
∈ R.

Direct computations of the above expressions show that not all real curves can serve as spectral
curves of the mentioned integrable hierarchies. As proven in [2, Propositions 4, 5], [3, Theorem 5],
[4, Theorem 5], the requires reality conditions are satisfied on the following curves.
Theorem 1. Hyperelliptic curves which possess a branch point at infinity, and all other branch
points are real, serve as spectral curves for the KdV hierarchy.
Theorem 2. There exist two types of real hyperelliptic curves which satisfy the reality conditions
for the sine(sinh)-Gordon equation and the mKdV equation:
(RC) hyperelliptic curves which possess a branch point at infinity, a branch point at the origin,

and all other branch points are real.
(IC) hyperelliptic curves which possess a branch point at infinity, a branch point at the origin,

and all other branch points split in complex conjugate pairs.
Curves (RC) serve as spectral for the sinh-Gordon, and defocusing mKdV hierarchies. Curves (IC)
serve as spectral for the sine-Gordon, and focusing mKdV hierarchies.
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On the derivations and automorphisms of Clifford algebras
over countable-dimensional vector spaces

Oksana Bezushchak
(Taras Shevchenko National University of Kyiv, Kyiv, Ukraine)

E-mail: bezushchak@knu.ua

Let C`(V, f) denote the Clifford algebra of a vector space V over a field F of characteristic
not equal to 2, generated by V with unit 1 and defining relations v2 = f(v) · 1, where f is a
nondegenerate quadratic form; see [4, 5].

Assume the ground field F is algebraically closed. According to N. Jacobson [2], if the dimension
of the vector space V is even, then the Clifford algebra C`(V, f) is isomorphic to a matrix algebra;
if the dimension of V is odd, then C`(V, f) is isomorphic to the direct sum of matrix algebras. For
an infinite dimensional vector space V , the Clifford algebra Cl(V, f) is a locally matrix algebra;
see [1].

Two main families of derivations and automorphisms of Clifford algebras are known:
(1) Inner derivations and inner automorphisms.
(2) Bogolyubov derivations and Bogolyubov automorphisms.

The Clifford algebra C`(V, f) is graded by the cyclic group of order 2, expressed as
C`(V, f) = C`(V, f)0 + C`(V, f)1.

A derivation D of the algebra C`(V, f) is called even if
D(C`(V, f)0) ⊆ C`(V, f)0, D(C`(V, f)1) ⊆ C`(V, f)1;

and odd if
D(C`(V, f)0) ⊆ C`(V, f)1, D(C`(V, f)1) ⊆ C`(V, f)0.

We describe derivations of the Clifford algebra associated with a nondegenerate quadratic form
on a countable-dimensional vector space over an algebraically closed field of characteristic not
equal to 2. Any nonzero derivation D of C`(V, f) can be uniquely represented as a sum: D =∑

S αS ad(vS), where 0 6= αS ∈ F.
• For an even derivation D, the subsets S are finite, nonempty subsets of N of even order,
and each i ∈ N belongs to at most finitely many subsets S.
• For an odd derivation D, the subsets S are finite subsets of N of odd order, and each i ∈ N
lies in all but finitely many subsets S.

Additionally, we characterize when a nonzero even derivation of the Clifford algebra is a Bo-
golyubov derivation and when a Bogolyubov derivation corresponding to a skew-symmetric linear
transformation is an inner derivation.

Now, suppose the field F = R is the field of real numbers, and let f : V → R be a positive
definite quadratic form. In this case, the Clifford algebra C`(V, f) naturally inherits the structure
of a normed algebra. In a 2022 MathOverflow discussion, M. Ludewig (see [3]) posed the question
of whether every automorphism of C`(V, f) is continuous with respect to this norm.
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In response, we construct an algebraic automorphism of C`(V, f) that is not continuous with
respect to the given norm.
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Dual Thurtson norm of Euler classes of foliations on closed
3-Manifolds

Dmitry V. Bolotov
(B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of

Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine)
E-mail: bolotov@ilt.kharkov.ua

In this work we give an upper bound estimate on the dual Thurston norm of the Euler class of
an arbitrary smooth foliation F of dimension one defined on a closed three-dimensional orientable
irreducible atoroidal Riemannian manifold M3.

We present the following result.
Theorem 1. Let (M3, g) be a closed oriented three-dimensional irreducible atoroidal Riemannian
manifold equipped by a two-dimensional transversely oriented foliation F , whose leaves have the
modulus of a mean curvature H bounded above by the constant H0 ≥ 0, and M3 satisfies the
following conditions:

(1) V ol(M3) ≤ V0;
(2) k0 ≤ K ≤ K0;
(3) inj(M3) ≥ i0.
(4) stsys1(M3) ≥ s0

for some fixed constants V0 > 0, i0 > 0, k0 < K0, s0 > 0, bounding the volume V ol(M3), the sectional
curvature K of M3, the injectivity radius inj(M3) and the 1-dimensional stable systole stsys1(M3).
Then there exists the conctant C(H0, V0, i0, k0, K0, s0) such that the dual Thurston norm ||e(TF)||∗Th

of the Euler class e(TF) of the tangent to F distribution TF satisfies the following:
||e(TF)||∗Th ≤ C.

Seeding optimization in the batch crystallization of CAM
Enzo Bonacci

(The Natural Sciences Unit of ATINER, Athens, Greece)
E-mail: enzo.bonacci@physics.org

The citric acid monohydrate (CAM) is an important organic substance but, until 1997, the sci-
entific literature covered mostly the kinetics of nucleation [3] and the crystal growth [4] rather than
its production via the crystallization by cooling in a stirred tank reactor (STR). The Department
of Chemical Engineering at the University “La Sapienza” of Rome decided to fill that sci-tech gap
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through a meticulous investigation, with three STRs at the laboratories of San Pietro in Vincoli’s
district (DICMA), on the crystallization in discontinuous (batch) of CAM from aqueous solutions.
The author participated in that innovative experience, as experimenter and coder under the super-
vision of Prof. Barbara Mazzarotta, in the years 1997-1998 [1]. Our specific tasks were to spot the
main operating conditions, to modify them until an optimal crystal size distribution (CSD), i.e.,
large-sized homogeneous crystals of CAM, and to write a QBasic program predicting the outcomes
of any test in batch reactors [2]. Here we focus on the influence of the seeding, i.e., the role played
by the CAM seed crystals in the process thanks to their varied sizes and dipping temperatures.
All the data, collected and simulated, show that the light seed performs better than the heavy
seed and that a low seeding temperature gives the best CSD. The homogenous distribution of large
crystals from a low temperature round-bottomed tank, seeded with small CAM crystals, is due to
the maximum efficacy of the driving force provided by the related supersaturation.
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Singularities, Torsion, Cauchy Integrals and their Spectra
on Space-Time, III

Francisco Bulnes
(IINAMEI, Research Department in Mathematics and Engineering, TESCHA)

E-mail: francisco.bulnes@tesch.edu.mx

The field sources can beidentified as fields φAB , which in a complex Riemannian manifold that
models the space-time including field sources, can be re-interpreted as poles or singularities of said
manifold such that their integrals can calculate their value through the Cauchy type integrals as
the Conway integrals to any loop generated in the local causal structure (light cones) of the space-
time around of these fields. These integrals are solutions of the spinor equation associated to the
corresponding twistor field equation. A theorem is mentioned on the evidence of field torsion as
field invariant and geometrical invariant in poles of Cauchy type integrals in spinor-twistor frame.
Then the torsion existence in the space-time induces gravitational waves in a projective bundle.
Sources are evidence at least locally, of torsion existence. Therefore exists curvature here. Some
conjectures and technical lemmas are mentioned as references of other works which gives enter to
a new application conjecture to the respect.
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From Maxwell’s equations to relativistic Schrödinger
equation via Schwartz Linear Algebra and Killing vector

fields on the 2-sphere
David Carfì

(Department of Physics, University of Messina, Italy)
E-mail: dcarfi@unime.it

In this work, we develop a comprehensive mathematical framework unifying scalar relativistic
quantum mechanics with classical electromagnetic field theory by means of Schwartz-linear algebra.
Building upon the foundations introduced by David Carfì in [1, 2, 3, 4], we construct a partial
embedding of tempered scalar distributions into spaces of tempered vector-valued fields that carry
natural Maxwellian structure.

The key object of our study is an embedding operator J(η,f), Schwartz-linear and continuous,
that maps a large class of complex wave distributions

ψ ∈ S ′(M4,C)
into transverse vector fields

F ∈ W = S ′(M4,C3)

via spectral synthesis with polarization. Specifically, the embedding is constructed using a trans-
verse, right-handed polarization frame

f : k 7→ f(k) = (r(k), s(k)) ∈ R3 × R3,

defined on the dual space M∗
4 minus Π, where Π is a singular plane and r is a killing vector field

on the 2-sphere extended omogeneously to the whole dual of Minkovski space-time minus Π. The
Maxwell’s basis

w : k 7→ wk := ηk(r(k) + is(k)),

with ηk(x) = ei〈k,x〉, forms a Schwartz linearly independent system of circularly polarized plane
waves, generating a vast subspace S of Schwartz-Maxwell electromagnetic field space W . The map

J(η,f) : ψ 7→ J(η,f)(ψ) =

∫

M∗
4

(ψ)ηw

embeds scalar wave distributions into the Maxwell-Schwartz field space, provided that the complex
wave distribution ψ admits a momentum representation (ψ)η vanishing around the singular plane
Π.

We show that this embedding preserves eigenstructures of quantum observables diagonale on η.
The momentum operator p̂ = −ih̄∇ and energy operator Ê = ih̄∂0 act compatibly through J(η,f),
and wk are simultaneous eigenfunctions of p̂ and curl, with eigenvalues h̄~k and |~k|, respectively.
The operator h̄ curl is therefore identified with the momentum magnitude operator on the subspace
S of the Maxwell-Schwartz space.

Furthermore, the theory is extended to general embeddings J(β,f), constructed from arbitrary
Schwartz bases β and smooth frame fields f : D → C3 with the same domain of β. These
embeddings commute with all observables diagonal in the basis β, yielding a functorial structure.
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We also define position-space embeddings Ij(j = 1, 2, 3) using Dirac delta basis and demonstrate
that they preserve position eigenstates. This duality between frequency-space and position-space
embeddings reveals a deep symmetry between quantum representations.

As an example, a geometric interpretation is introduced via the use of Frenet frames along
spatial curves, allowing for the representation of localized electromagnetic waves carrying geometric
signatures of trajectories. Fields such as

δ0 ◦ γ · f ◦ γ : t 7→ δγ(t) · f(γ(t))
are shown to encode the curve γ via the support and polarization f .

The relativistic Schrödinger equation for photons, in tempered distribution space, is recovered
in the form

Êψ = c|p̂|ψ.
We show that in our subspace S the curl Maxwell’s equations can be synthesized into the same
Schrödinger’s form equation

ÊF = c|p̂|F,
where Ê is the energy operator in our space W , perfectly analogous to the energy operator in
the space of complex tempered distribution, p̂ is the momentum operator in W whose magnitude
operator equals the operator h̄ curl on the subspace S. This shows that any wave distribution
ψ, with a momentum representation vanishing around the singular plane Π, can be smoothly
interpreted as encoding an electromagnetic-type field. A wave distribution ψ solves the massless
relativistic Schrödinger equation if an only if the corresponding electromagnetic-type field solves the
massless Schrödinger-Maxwell equation in W . Analogously, we construct a faithfull representation
of the relativistic Schrödinger equation for massive particles in our space W , showing that each
wave distribution state of a massive particle (complex field) can be smoothly interpreted as an
electromagnetic-like field in W .

Delta distributions
ψ(x, t) = δ(x∓ ct)

are proven to be solutions of photons equation with spectral support positive or negative, corre-
sponding to right-moving and left-moving massless particles, respectively. The relation

m = h̄|~k|/c
defines the relativistic mass of a photon as a function of spectral content. On the other hand, the
dispersion relation of the massive plane wave fields satisfying the Maxwell-Schrödinger equation,
is given by the Einstein’s energy relation.

This work lays a foundation for a full spectral theory of relativistic fields within tempered
distribution spaces, connecting canonical Quantum Mechanics, Maxwell’s equations, and geometric
field structures under a unified, mathematically rigorous umbrella.
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Infinitesimal conformal transformations and vielbein
formalism

Yevhen Cherevko
(Department of Cybersecurity, National University ”Odesa Law Academy” 23, Fontanska str.,

65009, Odesa, Ukraine)
E-mail: cherevko@usa.com

Olena Chepurna
(Department of Cybersecurity, National University ”Odesa Law Academy” 23, Fontanska str.,

65009, Odesa, Ukraine)
E-mail: chepurna@onua.edu.ua

Yevheniia Kuleshova
(Department of Algebra and Geometry, Faculty of Science, Palacký University Olomouc

Křířkovského 511/8, CZ-771 47 Olomouc, Czech Republic)
E-mail: yevheniia.kuleshova01@upol.cz

When exploring infinitesimal transformations of differentiable manifolds, we typically use holo-
nomic coordinate systems. However, to study spinor fields, we introduce a set of four independent
vector fields tia(x), with a = 0, 1, 2, 3, defined at each point of a spacetime (V 1,3, g). These vectors
are orthonormal with respect to the spacetime metric and satisfy the condition:

tia(x) t
j
b(x) gij(x) = ηab, where ηab = diag(1,−1,−1,−1).

The inverse matrix tai (x) is defined such that:
tia(x) t

a
j (x) = δij, tia(x) t

b
i(x) = δab .

This approach is known as the vielbein formalism, where the field tai (x) is called the vielbein [1].
The spin connection is defined by the following expression:

ω a
k b =

(
tib Γ

h
ki + ∂kt

h
b

)
tah. (1)

From equation (1), we obtain the identity:
∂kt

h
a + Γhjkt

j
a − ω b

k at
h
b = 0.

The covariant derivative of a spinor field ψ(x) is given by:

∇kψ = ∂kψ −
1

4
ωkab γ

abψ = ∂kψ + Γkψ,

where γab = 1
2
(γaγb − γbγa) is the antisymmetrized product of two gamma matrices.

The covariant derivative of the adjoint spinor ψ = ψ†γ0 is:

∇kψ = ∂kψ + ψ
1

4
ωkabγ

ab = ∂kψ − ψΓk.

Infinitesimal transformations of the form
xh = xh + εξh(x1, x2, . . . , xn)

are called conformal transformations if the following condition is satisfied [4, p. 157]:
Lξgij = ξi,j + ξj,i = ϕgij, (2)

where ϕ(x) is a scalar function.



16

Taking the Lie derivative of the vielbein yields:

Lξt
a
i (x) =

ϕ

2
tai (x). (3)

For any geometric object field ΩΛ
M(ξ), the following identity holds [4, p. 23]:

Lξ∂kΩ
Λ
M(ξ) = ∂kLξΩ

Λ
M(ξ). (4)

Using this result, we find the Lie derivative of the spin connection:

Lξωkab =
1

2
(tkaϕb − tkbϕa) ,

where ϕb = ∂bϕ = tjb∂jϕ.
Thus, for the spin-affine connection Γk, we obtain:

LξΓk = −
1

8
(tkaϕb − tkbϕa)γab = −

1

4
tkaϕbγ

ab. (5)

The stress-energy tensor of a spinor field (s = 1
2
) in the spacetime (V 1,3, g) is given by [3]:

Tjk =
i

2

(
ψγ(j∇k)ψ − (∇(jψ)γk)ψ

)
, (6)

where γj = γat
a
j (x).

Taking into account equations (2), (3), (4) (5), and (6), we derive the Lie derivative of the
stress-energy tensor:

LξTjk =
ϕ

2

(
Tjk −

i

4

(
ψγjtkaϕbγ

abψ + ψγktjaϕbγ
ab

+ψtkaϕbγ
abγj + ψtjaϕbγ

abγkψ
))
.

There exists a scalar quantity:

|A|2 = AigijA
j = (ψγiψ) gij (ψγ

jψ),

where Ai = ψγiψ is the four-current of the spinor field ψ.
This scalar is invariant under conformal transformations:

Lξ(|A|2) = Lξ
(
AigijA

j
)
= Lξ

(
ψγiψ · gij · ψγjψ

)
= 0.
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On topologization of subsemigroups of the bicyclic monoid
Adriana Chornenka

(Ivan Franko National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine)
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In this paper we shall follow the terminology of [2, 5, 6, 7].
A semigroup S is called inverse if for any element x ∈ S there exists a unique x−1 ∈ S such that

xx−1x = x and x−1xx−1 = x−1. The element x−1 is called the inverse of x ∈ S.
A topology τ on a semigroup S is called a semigroup (shift-continuous) topology if (S, τ) is a

topological (semitopological) semigroup.
The bicyclic monoid C(p, q) is the semigroup with the identity 1 generated by two elements p and

q subjected only to the condition pq = 1. The bicyclic monoid admits only the discrete semigroup
Hausdorff topology [4]. Bertman and West in [1] extended this result for the case of Hausdorff
semitopological semigroups. T1-topologizations of the bicyclic monoid C(p, q) are studied in [3].
Theorem 1. Let S be a subsemigroup of the bicyclic semigroup C (p, q). If S contains infinitely
many idempotents then every shift-continuous Hausdorff topology on S is discrete.
Corollary 2. Let S be an inverse subsemigroup of the bicyclic semigroup C (p, q). Then every
shift-continuous Hausdorff topology on S is discrete.

Also we give sufficient algebraic conditions on a subsemigroup S of the bicyclic semigroup C (p, q)
when the semigroup S admits a non-discrete Hausdorff semigroup (shift-continuous) topology.
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Isoperimetric profile and quantitative orbit equivalence for
lamplighter-like groups (joint work with Vincent

Dumoncel)
Corentin Correia

(Université Paris Cité)
E-mail: corentin.correia@imj-prg.fr

Measure equivalence has been introduced by Gromov as a measured analogue of quasi-isometry.
In this talk we focus on the closely related notion of orbit equivalence which is in fact a source of
examples for measure equivalence.

Two groups G and H are orbit equivalent if there exist two free probability measure-preserving
G- and H-actions on a standard probability space, having the same orbits.

However Orstein and Weiss proved that two infinite amenable groups are orbit equivalent. To
get an interesting theory, we need to strengthen the definition of orbit equivalence.

In this talk, we introduce the quantitative versions of orbit equivalence, which propose to add
some restrictions on two maps called cocycles, which describe more precisely the orbit equalities
of a given orbit equivalence between G and H. Given maps ϕ, ψ : R+ → R+, we define the notion
of ϕ-integrability of a cocycle (for instance, being Lp when ϕ(x) = xp), and the notion of (ϕ, ψ)-
integrability for an orbit equivalence (which asks that one cocycle is ϕ-integrable and the other is
ψ-integrable). If G and H are amenable, these quantifications provide interesting information on
their geometry, since the isoperimetric profiles of the groups give obstructions to the existence of
quantitative versions of orbit equivalence (see [1, Theorems 1.1, Corollary 4.7]), and then lead to
the following problem.
Problem 1. What is the ”highest” map ϕ : R+ → R+ such that there exists a (ϕ,L0)-integrable
orbit equivalence from G to H, and vice versa?

In some sense, this is a more quantitative comparison between groups. The highest quantifica-
tion we can get answers to the following question: if two groups are not quasi-isometric, how much
do their geometry differ?

In a joint work with Vincent Dumoncel, we study quantitative orbit equivalence for lampshuffler
groups. Given a group H, the lampshuffler group over H is

Shuffler(H) := FSym(H)oH,

where FSym(H) is the set of permutations of H of finite support, and the action of H on it is given
by k · σ : h ∈ H → kσ(k−1h).

Lampshufflers belong to a large class of groups which look like lamplighter group. They have
been intensively studied in [2], where the authors found conditions for two lamplighters to be
quasi-isometric, for two lampshufflers to be quasi-isometric, etc.

Outlines of our work: Our goal is to quantitatively compare lampshufflers. We first build
explicit orbit equivalence couplings between lampshufflers and quantify the associated cocycles.
Secondly, we compute the isoperimetric profiles of lampshufflers to prove that the quantifications
we find are optimal. In this talk, I will present our results with more details.
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Local Moduli of Sasaki-Einstein metrics on rational
homology 7-spheres

Jaime Cuadros
(Pontificia Universidad Católica del Perú)

E-mail: jcuadros@pucp.edu.pe

For Sasakian manifolds, which are roughly speaking the odd dimensional analogue of Kähler
manifolds, the moduli problem has been addressed and an appropriate notion of moduli space has
been achieved, see [1] and references therein. In particular, finding the number of components of
this moduli has been studied and used to obtain lower bounds for the dimension of the moduli space
for links of Brieskorn-Pham polynomials and Smale manifolds [4, 6, 2, 7]. An important ingredient
to obtain information on the moduli is given by the use of invertible polynomials, particularly to
describe the local moduli of Sasaki-Einstein metrics.

In this talk, which is based on a joint work with J. Lope [10], we determine the dimension of the
local moduli space of Sasaki-Einstein metrics for links of invertible polynomials coming from the
list of Johnson and Kollár of anticanonically embedded Fano 3-folds of index 1 [5] that produce
Q-homology 7-spheres, that is, 7-manifolds whose Q-homology equals that of the 7-sphere [3, 8].
In order to do so, we propose additional conditions to the Diophantine equations associated to this
problem. We also find solutions for the problem associated to the moduli for the Berglund-Hübsch
duals [9] of links arising from Thom-Sebastiani sums of chain and cycle polynomials.

Our findings can be interpreted in two different settings:
• Seifert S1-bundles are Q-homology spheres if and only if the corresponding orbifolds are
Q-homology complex projective spaces, so our results describes some components of the
moduli space of Q-homology complex projective 3-spaces with quotient singularities.
• Sasaki-Einstein structures on the manifold determine Ricci-flat Kähler cone metrics on the
corresponding affine cone, so our results give information on the moduli of Calabi-Yau
cones.

REFERENCES
[1] Charles P. Boyer, Contact Structures of Sasaki Type and Their Associated Moduli , Complex Manifolds; 6:1-30

(2019)
[2] Charles Boyer, Krysztof Galicki, János Kollár. Einstein Metrics on Spheres, Annals of Mathematics, 162 , 557-580,

(2005).
[3] Charles Boyer, Krysztof Galicki, Michael Nakamaye. Einstein Metrics on Rational Homology 7-Spheres,

Ann.Inst.Fourier 52, no.5, 1569-1584, (2002).
[4] Charles, P Boyer, L. Macarini, O. van Koert, Brieskorn manifolds, positive Sasakian geometry, and contact topology,

Forum Math. 28, no. 5, 943-965. MR 3543703, (2016).
[5] Jennifer M. Johnson, Janós Kollár. Fano Hypersurfaces in Weighted Projective 4-Space, Exper. Math, 10, no.1,

151-158, (2004).
[6] Janós Kollár. Einstein metrics on five-dimensional Seifert bundles, J. Geom. Anal. 15, no. 3, 445-476. MR 2190241,

(2005).
[7] Yuchen Liu, Taro Sano, Luca Tasin. Infinitely many families of Sasaki-Einstein metrics of spheres, https://arxiv.

org/abs/2203.08468 (2022). To appear in J. Differential Geom.



20

[8] Jaime Cuadros Valle, Joe Lope Vicente. Sasaki-Einstein 7-manifolds and Orlik’s conjecture, Ann. Glob. Anal.
Geom. 65, 3, 2024.

[9] Jaime Cuadros Valle, Ralph Gomez, Joe Lope Vicente. Berglund-Hübsch transpose and Sasaki-Einstein rational
homology 7-spheres, Commun. Math. Phys. 405, 199 (2024). https://doi.org/10.1007/s00220-024-05093-5

[10] Jaime Cuadros Valle, Joe Lope Vicente. The local moduli of rational-homology 7-spheres and invertible polynomials,
https://arxiv.org/abs/2503.18650, 2025.

On boundary behavior of unclosed mappings with moduli
inequality

Evgeny Sevost’yanov
(Zhytomyr Ivan Franko State University; Institute of Applied Mathematics and Mechanics,

Slov’yans’k)
E-mail: esevostyanov2009@gmail.com

Victoria Desyatka
(Zhytomyr Ivan Franko State University)
E-mail: victoriazehrer@gmail.com

Let D be a domain in Rn and let b ∈ ∂D. Then D has property P1 at b if the following condition
is satisfied: If E and F are connected subsets of D such that b ∈ E ∪F, then M(Γ(E,F,D)) =∞,
whereM denotes the (conformal) modulus of families of paths in Rn (see the definition below), and
Γ(E,F,D) is a family of paths joining E and F in D (see e.g. [1, Definition 17.5]). The following
results hold.
Theorem A. Suppose that f : D → D ′ is a quasiconformal mapping and that D has property

P1 at ∈ ∂D. Then C(f, b) contains at most one point at which D ′ is finitely connected (see [1,
Theorem 17.13]).
Theorem B. Let f : D → Rn be quasiregular mapping with C(f, ∂D) ⊂ ∂f(D). If D is locally

connected at a point b ∈ ∂D and D ′ = f(D) is qc accessible at some point y ∈ C(f, b), then
C(f, b) = {y} (see e.g. [2, Theorem 4.2], cf. [3, Theorem 4.2]).

We give some generalization of Theorems A and B. Recall some definitions. A Borel function
ρ : Rn → [0,∞] is called admissible for the family Γ of paths γ in Rn, if the relation

∫
γ

ρ(x) |dx| ⩾ 1

holds for all (locally rectifiable) paths γ ∈ Γ. In this case, we write: ρ ∈ admΓ. Let p ⩾ 1,
then p-modulus of Γ is defined by the equality Mp(Γ) = inf

ρ∈ admΓ

∫
Rn

ρp(x) dm(x) . Let x0 ∈ Rn,

0 < r1 < r2 <∞,
S(x0, r) = {x ∈ Rn : |x− x0| = r} , B(x0, r) = {x ∈ Rn : |x− x0| < r} (1)

and A = A(x0, r1, r2) = {x ∈ Rn : r1 < |x− x0| < r2} . Let Si = S(x0, ri), i = 1, 2, where spheres
S(x0, ri) centered at x0 of the radius ri are defined in (1). Let Q : Rn → R be a Lebesgue
measurable function satisfying the condition Q(x) ≡ 0 for x ∈ Rn \ D. Let p ⩾ 1. Due to [4],
a mapping f : D → Rn is called a ring Q-mapping at the point x0 ∈ D \ {∞} with respect to
p-modulus, if the condition

Mp(f(Γ(S1, S2, D))) ⩽
∫

A∩D

Q(x) · ηp(|x− x0|) dm(x) (2)
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holds for some r0(x0) > 0, all 0 < r1 < r2 < r0 and all Lebesgue measurable functions η : (r1, r2)→
[0,∞] such that

r2∫

r1

η(r) dr ⩾ 1 . (3)

Recall that a mapping f : D → Rn is called discrete if the pre-image {f−1 (y)} of each point
y ∈ Rn consists of isolated points, and is open if the image of any open set U ⊂ D is an open
set in Rn. Later, in the extended space Rn = Rn ∪ {∞} we use the spherical (chordal) metric
h(x, y) = |π(x) − π(y)|, where π is a stereographic projection Rn onto the sphere Sn(1

2
en+1,

1
2
) in

Rn+1, namely,

h(x,∞) =
1√

1 + |x|2
, h(x, y) =

|x− y|√
1 + |x|2

√
1 + |y|2

, x 6=∞ 6= y

(see [1, Definition 12.1]). Further, the closure A and the boundary ∂A of the set A ⊂ Rn we
understand relative to the chordal metric h in Rn. Given a mapping f : D → Rn, we denote
C(f, x) := {y ∈ Rn : ∃ xk ∈ D : xk → x, f(xk)→ y, k →∞} and C(f, ∂D) =

⋃
x∈∂D

C(f, x) . In what

follows, IntA denotes the set of inner points of the set A ⊂ Rn. Recall that the set U ⊂ Rn is
neighborhood of the point z0, if z0 ∈ IntA. Due to [4], we say that a function ϕ : D → R has a finite
mean oscillation at a point x0 ∈ D, write ϕ ∈ FMO(x0), if lim sup

ε→0

1
Ωnεn

∫
B(x0, ε)

|ϕ(x)− ϕε| dm(x) <

∞, where ϕε = 1
Ωnεn

∫
B(x0, ε)

ϕ(x)dm(x) . Let Q : Rn → [0,∞] be a Lebesgue measurable function.

We set Q ′(x) =

{
Q(x), Q(x) ⩾ 1 ,

1, Q(x) < 1 .
Denote by q ′

x0
the mean value of Q ′(x) over the sphere

|x− x0| = r, that means,

q ′
x0
(r) :=

1

ωn−1rn−1

∫

|x−x0|=r

Q ′(x) dHn−1 . (4)

Note that, using the inversion ψ(x) = x
|x|2 , we may give the definition of FMO as well as the

quantity in (4) for x0 =∞. We say that the boundary ∂D of a domain D in Rn, n ⩾ 2, is strongly
accessible at a point x0 ∈ ∂D with respect to the p-modulus if for each neighborhood U of x0 there
exist a compact set E ⊂ D, a neighborhood V ⊂ U of x0 and δ > 0 such that Mp(Γ(E,F,D)) ⩾ δ
for each continuum F in D that intersects ∂U and ∂V .
Theorem 1. ([5]). Let p ⩾ 1, let D and D ′ be domains in Rn, n ⩾ 2, f : D → D ′ be an
open discrete mapping satisfying relations (2)–(3) at the point b ∈ ∂D with respect to p-modulus,
f(D) = D ′. In addition, assume that 1) the set E := f −1(C(f, ∂D)) is nowhere dense in D and D
is finitely connected on E, i.e., for any z0 ∈ E and any neighborhood Ũ of z0 there is a neighborhood
Ṽ ⊂ Ũ of z0 such that (D∩ Ṽ )\E consists of finite number of components; 2) for any neighborhood
U of b there is a neighborhood V ⊂ U of b such that: 2a) V ∩ D is connected, 2b) (V ∩ D) \ E
consists at most of m components, 1 ⩽ m < ∞, 3) D ′ \ C(f, ∂D) consists of finite components,
each of them has a strongly accessible boundary with respect to p-modulus. Suppose that at least
one of the following conditions is satisfied: 41) a function Q has a finite mean oscillation at the
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point b; 42) qb(r) = O
([

log 1
r

]n−1
)
as r → 0; 43) the condition

δ(b)∫
0

dt

t
n−1
p−1 q

′ 1
p−1

b (t)

=∞ holds for some

δ(b) > 0. Then f has a continuous extension to b.
If the above is true for any point b ∈ ∂D, the mapping f has a continuous extension f : D → D ′,

moreover, f(D) = D ′.
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Proteins, fundamental to biological function, are complex molecules composed of amino acid
chains that fold into highly specific three-dimensional configurations. These folded structures are
stabilized by intramolecular bonds—interactions between distant residues, that are essential for
maintaining shape and functionality. Mathematically, such structures can be modeled as bonded
knots, where the protein backbone forms a knot or open curve, and the stabilizing interactions are
represented by bonds connecting non-adjacent segments ([2, 3]).

In this talk, I will present the theory of bonded knots and its extension to bonded braids,
emphasizing their structural, topological, and algebraic features. Bonded knots ([1]) generalize
classical knot theory by introducing bond constraints, which fall into three main classes: long
bonds (topological and rigid-vertex), regular bonds (with unknotted connections), and tight bonds
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(modeled as non-crossing line segments). For each type, I will describe a system of Reidemeister-
type moves—both in the topological and rigid frameworks—and introduce core invariants that
classify these objects.

I will then transition to bonded braids ([4]), discussing an Alexander-type theorem that relates
bonded knots to their braid representations in the topological category. The talk will include the
definition of the bonded braid monoid, its generating set and relations, and a Markov-type theorem
capturing braid equivalence. I will also sketch how this monoid embeds into a group, revealing
deeper algebraic structure.

Time permitting, I will conclude with a look at bonded knots on the torus and their relation to
doubly periodic bonded tangles ([5, 6, 7]), offering insights into their covering spaces and potential
relevance to structural biology. This presentation provides an accessible entry point into the
emerging theory of bonded knots and braids and its rich connections to topology, algebra, and the
geometry of biomolecular systems.

This is a joint work with Prof. Dr. L.H. Kauffman (University of Illinois at Chicago, U.S.A.),
Prof. Dr. Sofia Lambropoulou (National Technical University of Athens, Greece) and Dr. Sonia
Mahmoudi (Tohoku University, Japan).
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In his ground-laying work [1], Grünbaum set up a general framework for quantifying the point
(a)symmetry of convex bodies, i.e., compact convex sets with nonempty interior. Specifically, a
measure of (a)symmetry is a similarity-invariant (or even affinely invariant) Hausdorff continuous
function f that takes convex bodies to the unit interval with the property that f(K) = 1 if and
only if K is point-symmetric.

In [1], some generalizations are discussed, for example quantifying (a)symmetry with respect to
reflections across affine subspaces of dimension at least one. However, the author mentions lack of
results in the literature in this direction. Different notions of chirality or axiality for quantifying the
(a)symmetry of planar shapes with respect to reflections across straight lines have been investigated
in the mathematical literature in the past decades. Asymmetry notions for planar convex bodies
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are also studied in mathematical chemistry , where polygons serve as abstractions of molecules and
where chirality impacts chemical properties.

Our contribution is based on an extension of the notion of Minkowski asymmetry, which, for
a convex body K, is defined as the smallest dilation factor λ > 0 such that K is a subset of a
translated and dilated copy of −K, the mirror image of K upon reflection across the coordinate
origin. We incorporate reflections across higher-dimensional (affine) subspaces by defining the jth
Minkowski chirality αj(K) as the smallest dilation factor λ > 0 such that the convex body K ⊂ Rn

is a subset of a translated and dilated copy of ΦU(K), where ΦU denotes the reflection across the
j-dimensional affine subspace U ⊂ Rn for j ∈ {0, . . . , n}. Note that the Minkowski asymmetry is
α0(K) in this terminology.

It is well-known that α0(K) ∈ [1, n] for all convex bodies K ⊂ Rn, with α0(K) = 1 if and only if
K is point-symmetric, and α0(K) = n if and only if K is a fulldimensional simplex, see [1].

Our main result for convex bodies in general dimensions extends the upper bound on the
Minkowski asymmetry to all Minkowski chiralities αj(K) for any j ∈ {0, . . . , n}.
Theorem 1. Let K ⊂ Rn be a convex body and j ∈ {0, . . . , n}. Then

1 ≤ αj(K) ≤ min{n, α0(K) + 1

2

√
n},

with αj(K) = 1 if and only if there exists a j-dimensional affine subspace U such that K = ΦU(K).
In fact, the upper bound in 1 can be strengthened and unified to

αj(K) ≤
√
α0(K)n (1)

for any convex body K ⊂ Rn and j ∈ {0, . . . , n}. Since α0(K) ≤ n with α0(K) = n solely for
simplices, this result implies αj(K) ≤ n and in particular that only simplices might have jth
Minkowski chirality n.

We recall that the Banach–Mazur distance between convex bodies K,L ⊂ Rn is defined by
dBM(K,L) = inf{λ > 0 : t1 +K ⊂ A(L) ⊂ t2 + λK, A ∈ GL(Rn), t1, t2 ∈ Rn},

where GL(Rn) denotes the set of invertible real n× n matrices.
The inequality (1) is also consequential for the absolute upper bound on the jth Minkowski

chirality. Any convex body K with Minkowski asymmetry α0(K) near n is close to a simplex in
the Banach-Mazur distance. Together with (1), this means that either the supremum of αj(T )
over all simplices T ⊂ Rn equals n, or there exists some constant c(n, j) < n such that any convex
body K ⊂ Rn satisfies αj(K) ≤ c(n, j). In other words, we can determine whether the inequality
αj(K) ≤ n is tight by checking only simplices.

Although this remains a challenging problem in general, we are able to solve it in the planar
case for the first Minkowski chirality.
Theorem 2. Let K ⊂ R2 be a triangle. Then the infimum in the definition of α1(K) is attained
at some affine subspace U of R2 that is necessarily

(1) parallel to the bisector of one of the largest interior angles of K,
(2) parallel to the bisector of one of the smallest interior angles of K, or
(3) perpendicular to one of the longest edges of K.

Moreover, we have when K ⊂ R2 is a triangle

α1(K) =
[
1,
√
2
)
, (2)

with α1(K) = 1 precisely for isosceles triangles.
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The question of how large αj(K) can be for general n and j is still open, as even deciding whether
the inequality αj(K) ≤ n is actually tight appears to be difficult. Instead, we focus on a special
class of convex bodies and answer the first question for planar point-symmetric convex bodies: the
upper bound from 1 becomes

√
2 in this case, and the following two theorems show that this bound

is reached precisely by a specific family of parallelograms.
The second theorem uses the John ellipsoid EJ(K) of a convex body K ⊂ Rn, which is the unique

volume-maximal ellipsoid contained in K.
Theorem 3. Let K ⊂ R2 be a point-symmetric convex body with dBM(K,P ) ≥ 1 + ε for a
parallelogram P ⊂ R2 and some ε > 0. Then

α1(K) <
√
2
(
1− ε

10

)
.

Theorem 4. Let K ⊂ R2 be a parallelogram. Then the infimum in the definition of α1(K) is
attained at some affine subspace U of R2 that is necessarily parallel to

(1) the bisector of an angle formed by consecutive edges of K,
(2) the bisector of an angle formed by the diagonals of K, or
(3) a principal axis of the John ellipse EJ(K)(K) of K.

Moreover, we have when K ⊂ R2 is a parallelogram

α1(K) =
[
1,
√
2
]
, (3)

with α1(K) = 1 precisely for rectangles and rhombuses. Moreover, α1(K) =
√
2 if and only if the

angles between the diagonals coincide with the interior angles and the ratio between the lengths of
the longer edges and the shorter edges is at least

√
2.
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The ultrametric spaces generated by arbitrary nonnegative vertex labelings on both finite and
infinite trees were first considered in [2] and studied in [5, 4]. The simplest types of infinite trees
are rays and star graphs. The totally bounded ultrametric spaces generated by labeled almost rays
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have been characterized in [7]. Furthermore, paper [6] contains a purely metric characterization of
ultrametric spaces generated by labeled star graphs.

Our main purpose is to give an answer to the following problem.
Problem 1. Let (X, d) be an ultrametric space. Find conditions under which (X, d) admits an
isometric embedding in an ultrametric space generated by labeled star graph.

Here and in what follows, by labeled star graph S(l) we will mean a star graph S equipped with
a labeling l : V (S)→ R+, where V (S) is the vertex set of the star graph S.

Let S(l) be a labeled star graph. As in [2] we define a mapping dl : V (S)× V (S)→ R+ by

dl(u, v) =

{
0, if u = v,

max
w∈V (P )

l(w), otherwise,

where P is the path joining u and v in S. Let (Y, ρ) be an ultrametric space. We say that (Y, ρ) is
generated by labeled star graph S(l) if Y is the vertex set of S and the equality ρ = dl holds.

We will also use the concept of diametrical graph introduced in [1]. The next definition is a
modification of Definition 2.1 from [8].
Definition 2. Let (X, d) be an ultrametric space with cardX ≥ 2. A graph G is called the
diametrical graph of (X, d) if X is the vertex set of G and points x, y ∈ X are adjacent in G if and
only if

d(x, y) = sup{d(u, v) : u, v ∈ X}.
The following theorem gives a solution of Problem 1.

Theorem 3. Let (X, d) be an infinite ultrametric space. Then the following statements are equiv-
alent:

(i) There is (Y, ρ) such that (Y, ρ) is generated by labeled star graph and (X, d) is isometric to a
subspace of (Y, ρ).

(ii) (X, d) contains no four-point subspace with diametrical graph isomorphic to the cycle C4.
If (X, d) is a compact ultrametric space, then Theorem 3 follows from Theorem 5.2 of [3].
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This talks investigates the behavior of geodesics within subsets of infinite-dimensional mani-
folds, including singular spaces such as stratified spaces. We define spray-invariant sets as those
where any geodesic starting within the set remains entirely within it. The regularity of these sets
significantly impacts their geometric properties.

We study these sets in the context of spray geometry, without relying on Finsler or Riemannian
metrics, enabling the analysis of geodesic dynamics in infinite-dimensional manifolds where tradi-
tional geometric tools may not be applicable. For a subset S of a manifold M and a spray S on M,
we define an admissible set AS,S that characterizes when a geodesic remains within S. We prove
that if S is closed, then a geodesic lies entirely in S if and only if its tangent vector belongs to AS,S
for all time, establishing AS,S as a key invariant. For sufficiently differentiable submanifolds S, we
show that AS,S characterizes totally geodesic submanifolds.

We also show that spray-invariant sets remain invariant under spray automorphisms. We explore
the relationship between spray invariance and the tangency of the spray to the admissible set,
addressing this using the Nagumo-Brezis Theorem, where we establish the equivalence between
spray invariance and this tangency condition.

Finally, we study Lie group actions on Banach manifolds and their orbit type decompositions.
We prove that if the action admits suitable local slices (defined by invariance, local triviality, and
transversality), then each orbit type stratum is invariant under a group-invariant spray.
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Let G be a (n + 1)-dimensional Lie group with a left invariant metric. For an (immersed)
hypersurface M in G define the Gauss map Φ of M by

Φ: M → RP n; Φ(p) = dLp−1(NpM).

Here a point p is identified with its image under the immersion, NpM is a normal space of N at
p, and dLp−1 is the differential of the left translation in G. If M is orientable we can consider
also the orientable Gauss map whose target space is Sn. It was shown in [1] that if the metric
of G is biinvariant then Φ is harmonic if and only if M is of constant mean curvature (CMC).
This is a generalization of a classical Euclidean result of [4]. In particular, for n = 2 biinvariant
metrics exist on the simply-connected Lie groups R3 and S3 and are their usual metrics of constant
curvature. It appears that for many other classes of left invariant metrics the equivalence between
the harmonicity of Φ and CMC does not take place. For example, each CMC hypersurface with
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the harmonic Gauss map in the (2m+1)-dimensional Heisenberg group is locally a vertical cylinder
([3]).

Using a well-known description from [2] of left invariant metrics on a three-dimensional Lie group
G, we derive criteria of the harmonicity of Φ for a general such metric. This allows us to prove the
following:
Theorem 1. Let a left invariant metric on a connected three-dimensional unimodular Lie group
G be right invariant with respect to a one-dimensional subgroup H ⊂ G, but not biinvariant, and
let M be a connected surface in G. Then from any two of the following claims the third follows:

(1) M is CMC;
(2) the Gauss map of M is harmonic;
(3) M is either everywhere orthogonal to the one-dimensional foliation generated by H (is

horizontal) or is composed of leaves of this foliation (is vertical).
This applies to all left invariant metrics on the 3-dimensional Heisenberg group, some metrics on

the groups E(2) (of orientation-preserving Euclidean plane isometries), SL(2,R) and their universal
coverings, and to some non-biinvariant metrics on SU(2) and its universal covering S3. It allows us
to give explicit descriptions of CMC surfaces with harmonic Gauss maps for some model metrics
on these groups. We also consider some examples of metrics that neither are biinvariant nor satisfy
the conditions of the theorem 1 (in particular, any left invariant metric on the Lie group Sol is like
that).

We also use the Gauss map harmonicity criteria for non-unimodular groups to prove the following:
Theorem 2. A complete connected surface in the hyperbolic space H3 is CMC with the harmonic
Gauss map (in the Lie group sense) if and only if it is a horosphere parallel to the sphere at infinity.

Here the Lie group structure on the half-space (z > 0) model of H3 with the usual metric
1
z2
(dx2+dy2+dz2) corresponds to the orthonormal frame of left-invariant fields X1 = z ∂

∂x
, X2 = z ∂

∂y
,

X3 = z ∂
∂z
, and the horospheres are thus of the form z = z0.

These results were partially obtained in a joint work with Iryna Savchuk.
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Consider the following control system on a half-plane

wt = ∆w, x1 ∈ R+, x2 ∈ R, t ∈ (0, T ), (1)
wx1
(
0, (·)[2], t

)
= δ[2]u(t), x2 ∈ R, t ∈ (0, T ), (2)

w
(
(·)[1], (·)[2], 0

)
= w0, x1 ∈ R+, x2 ∈ R, (3)

where R+ = (0,∞), T > 0, u ∈ L∞(0, T ) is a control, δ[m] is the Dirac distribution with respect to
xm, m = 1, 2, w0 ∈ L2(R+ × R). The subscripts [1] and [2] associate with the variable numbers,
e.g., (·)[1] and (·)[2] correspond to x1 and x2, respectively, if we consider f(x), x ∈ R2. This control
system is considered in spaces of Sobolev type. We treat equality (2) as the value of the distribution
wx1 on the line x1 = 0.

A point-wise control is a mathematical model of a source supported in a domain of very small
size with respect to the whole domain. That is why studying control problems under a point-wise
control is an important issue in control theory.

The controllability problems for the heat equation on a half-plane controlled by the Neumann
boundary condition with a point-wise control is studied. These problems for the heat equation on
a half-plane controlled by the Dirichlet boundary condition with a point-wise control were studied
in [1].

Let w0 ∈ L2(R+ ×R). By RT (w
0), denote the set of all states wT ∈ L2(R+ ×R) for which there

exists a control u ∈ L∞(0, T ) such that there exists a unique solution w to system (1)–(3) such
that w

(
(·)[1], (·)[2], T

)
= wT .

Definition 1. A state w0 ∈ L2(R+×R) is said to be controllable to a target state wT ∈ L2(R+×R)
in a given time T > 0 if wT ∈ RT (w

0).
Definition 2. A state w0 ∈ L2(R+ ×R) is said to be approximately controllable to a target state
wT ∈ L2(R+ × R) in a given time T > 0 if wT ∈ RT (W 0), where the closure is considered in the
space L2(R+ × R).

For control system (1)–(3), the set RT (0) ⊂ L2(R+ × R) of its states reachable from 0 (i.e. the
set which is formed by the end states w(·, T ) of this system when controls u ∈ L∞(0, T )) and the
set RL

T (0) ⊂ RT (0) ⊂ L2(R+ ×R) of its states reachable from 0 by using the controls u ∈ L∞(0, T )
satisfying the restriction ‖u‖L∞(0,T ) ≤ L (where L > 0 is a given constant) are studied to investigate
the (approximate) controllavility properties. It is established that a function f ∈ RT (0) can be
represented in the form f(x) = g

(
|x|2
)
a.e. in R+ × R where g ∈ L2(0,+∞). In fact, the problem
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dealing with functions from L2(R+ × R) is reduced to a problem dealing with functions from
L2(0,+∞). To this aid, operators Ψ and Φ are introduced and studied (see below).

If f ∈ L2(R+ × R) and f(x) = g(|x|2), x ∈ R+ × R, for some g defined on R+, then g ∈ L2(R+)
and ‖f‖L2(R+×R) =

√
π
2
‖g‖L2(R+) holds; and vice versa: if g ∈ L2(R+), then for f(x) = g(|x|2),

x ∈ R+ × R, we have f ∈ L2(R+ × R). Taking this into account, we can introduce the space

H =
{
f ∈ L2(R+ × R)

∣∣ ∃g ∈ L2(R+) f(x) = g(|x|2) a.e. on R+ × R
}

(4)

and the operator Ψ : H→ L2(R+) with the domain D
(
Ψ
)
= H for which

Ψf = g ⇔
(
f(x) = g(|x|2) a.e. on R+ × R, f ∈ D

(
Ψ
)
= H.

One can see that Ψ is invertible, Ψ−1 : L2(R+) → H, and
(
Ψ−1g

)
(x) = g(|x|2), x ∈ R+ × R for

g ∈ D
(
Ψ−1

)
= L2(R+).

Thus, Ψ is an isomorphism of H and L2(R+), and ‖Ψ‖ =
√

2
π
. Moreover, H is a Hilbert space

with respect to the inner product 〈·, ·〉L2(R+×R) and 2〈f, h〉L2(R+×R) = π〈Ψf,Ψh〉L2(R+), f ∈ H,
h ∈ H.

Let us introduce the operator Φ : L2(R+) → L2(R+) with the domain D(Φ) = L2(R+) by the
rule

(
Φg
)
(ρ) =

1

2
lim
N→∞

∫ N

0

g(r)J0
(√

rρ
)
dr, ρ ∈ R+, g ∈ L2(R+),

where J0 is the Bessel function of order 0. We prove that Φ is invertible and Φ−1 = Φ, in particular,
Φ is an isometric isomorphism of L2(R+). Note that the transform providing by the operator Φ is
a modification of the well-known Hankel transform of order 0.

The operators Ψ and Φ are key tools of this work, which allow to obtain the following main
results:

(a) some properties of the set RT (0), in particular, RT (0) = H;
(b) some properties of the set RL

T (0);
(c) necessary and sufficient conditions for controllability in a given time under the control

bounded by a given constant;
(d) sufficient conditions for approximate controllability in a given time under the control

bounded by a given constant;
(e) necessary and sufficient conditions for approximate controllability in a given time, in par-

ticular, the origin can be driven to a given state wT ∈ L2(R+ × R) in a given time T iff
wT ∈ H;

(f) the lack of controllability to the origin.
Results (c) and (d) are obtained from (b), and result (e) follows from (a). The method of

obtaining result (f) is very similar to that in [3]. The results are illustrated by examples.
The main results of the present paper are rather similar to those of [1]. However, the methods

of obtaining them are essentially different in these two papers. Roughly speaking, we deal with the
two-dimensional case studying reachability sets and constructing the solutions to controllability
and approximate controllability problems in [1], but reducing the two-dimensional reachability sets
to the one-dimensional ones, we deal with the one-dimensional case studying these problems and
constructing their solutions in the present paper. In addition, the methods used to study the one-
dimensional reachability sets in this paper principally differ from those used for two-dimensional
sets in [1]. Moreover, some results of the present work have not analogues in [1]. Most of the
obtained results were published in [2].
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Normal forms of Morse-Bott functions without saddles on
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Let M be a smooth compact and oriented surface, and denote by P a real line R or a circle S1.
Denote by F0(M,P ) a class of Morse-Bott functions without saddles on M with the value in P.
This class of functions naturally arises in the study of homotopy type of stabilizers of Morse-Bott
functions on surfaces with respect to the action of the group of diffeomorphisms by pre-composition,
see details in [1]. It is known that this class is non-empty ifM is diffeomorphic to one of the following
list: a cylinder S1 × [0, 1], a disk D2, a sphere S2, a torus T 2.

There are some trivial examples of functions from F0(M,P ) that are easy to write by hand:
Example 1. Let f0 :M0 → P be a smooth function from F0

(10) M0 = S1×[0, 1] = {(z, s) | z ∈ C, |z| = 1, 0 ≤ s ≤ 1} is a unit cylinder, and f0 : S1×[0, 1]→ R
is given by f0(z, s) = s,

(20) M0 = D2 = {(x, y) ∈ R2 | x2 + y2 ≤ 1} is a unit 2-disk, and f0 : D2 → R is given by
f0(x, y) = x2 + y2,

(30) M0 = S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} is a unit sphere, and f0 : S2 → R is given by
f0(x, y, z) = z,

(40) M0 = T 2 = {(w, z) ∈ C2 | |z| = |w| = 1} is a unit 2-torus, and f0 : T 2 → S1 is given by
f0(w, z) = z.

Note that these functions do not have critical circles. We will call them prime functions.
Our main result is the following theorem, see [2].

Theorem 2. A function f ∈ F0(M,P ) admits the following decomposition
f = κ ◦ f0 ◦ h−1 (1)

where h :M0 →M is a diffeomorphism, f0 ∈ F0(M0, P ) is a prime function, and a smooth function
κ : f0(M0)→ P which satisfies the following conditions:

(A) κ has the only finite number of non-degenerated critical points,
(B) κ does not have critical points at f0(Σf0) and f0(∂M),

where Σf0 is the set of critical points of f0. A factorization (1) is not unique and depends on the
choice of h. In particular, if f has no critical circles, then κ is a diffeomorphism.
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Let (M,κ) be a compact, connected, real-analytic Riemannian manifold. It is well known thatM
can be complexified in an essentially unique way, and that on a tubular neighborhood of M inside
the complexification, there exists a Kähler structure compatible with the metric κ, with Kähler
potential given by a real-analytic, strictly plurisubharmonic, and positive exhaustion function ρ.
The sublevel sets ρ < τ 2 are known as open Grauert tubes of radius τ , and they are strictly
pseudoconvex domains in the complexification. Their boundaries, denoted Xτ , inherit a CR-
holomorphic structure of codimension 1 and a natural contact structure.

If (M,κ) is endowed with an isometric action of a compact, connected Lie group G, this action
lifts to a holomorphic action on the open Grauert tube and to a CR action on the boundary Xτ ,
both commuting with the Hamiltonian flow of ρ, known as the geodesic flow. These lifted actions
give rise to unitary representations, respectively, on the eigenspaces of the Laplacian on (M,κ)
and on the eigenspaces of an elliptic self-adjoint Toeplitz operator induced by the generator of the
homogeneous geodesic flow on the the Hardy space H(Xτ ).

This talk, based on joint work with R. Paoletti, has a twofold aim: first, to describe the scaling
asymptotics of the equivariant Poisson-wave kernel, which relates to the asymptotic concentration
of complexified eigenfunctions of the Laplacian in a fixed isotype, when restricted to Xτ ; and
second, to describe the scaling asymptotics of the equivariant Szegő kernel, which pertains to the
asymptotic concentration of the eigenfunctions of the aforementioned Toeplitz operator in a given
isotypical component.

Centenary of Quantum Theory: What Comes Next?
Viktor Gerasimenko

(Institute of mathematics, Kyïv, Ukraïne)
E-mail: gerasym@imath.kiev.ua

This talk is dedicated to the centenary of the creation of quantum theory and on the occasion
of the International Year of Quantum Science and Technology.

It will outline the chronology of the last 350 years of the theory of fundamental evolution equa-
tions, which represent the laws of Nature. The discussion will cover the origins of the evolution
equations that describe quantum systems. Additionally, the talk will survey the mathematical
structure of modern quantum theory and the prospects for its future development.

Examples of applications of fundamental evolution equations that have sparked the second quan-
tum revolution in our time will also be provided.
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In this talk, we will briefly discuss the history of weighted Hardy inequalities, and present new
elementary and universal proof of the well known two weighted Hardy inequality from resent paper
[1]. In the second part we present (see [2]) a set of relations between several quite diverse types
of weighted inequalities involving various integral operators and fairly general quasi-norm-like
functionals, which we call sub-monotone. The main result enables one to solve a specific problem
by transferring it to another one for which a solution is known. Inequalities for Hardy, Copson,
geometric mean and harmonic mean operators are shown to be interlinked. We give applications
weighted inequalities restricted to cones of monotone functions [3].
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A linearly ordered real vector space E is called a vector lattice if sup{x, y} exists in E for every
x, y ∈ E. Let E be a vector lattice. For each x, y ∈ E with x ≤ y, the set [x, y] = {z ∈ E : x ≤ z ≤
y} is said to be an order interval. A subset A of E is called order bounded if it is included in some
order interval. By E+ we denote the set of all positive elements in E. A Banach space (E, ‖.‖)
is called a Banach lattice if E is a vector lattice and its norm satisfies the following property: for
each x, y ∈ E such that |x| ≤ |y|, we have ‖x‖ ≤ ‖y‖.
Definition 1. A net (xα) in an Archimedean vector lattice E is called order convergent to x ∈ E
if there exists a net (yβ) satisfying yβ ↓ 0, and for any β there exists αβ such that |xα− x| ≤ yβ for
all α ≥ αβ.
Definition 2. An operator T from a vector lattice E into a Banach lattice F is called AM -compact
if the image of each order bounded subset of E is relatively compact in F .

Every regular compact operator is an AM -compact. The identity operator I : l1 → l1 is an
AM -compact operator, but it is not compact operator.
Definition 3. Let τ ⊂ L(X,Y ). τ is called collectively AM -compact if for every order interval
[x, y] in X the set τ [x, y] =

⋃
T∈τ T [x, y] is relatively compact.

Definition 4. Let A and B be subsets of L+(X,Y ). A is called dominated by B if, for each S ∈ A
there exists T ∈ B such that S ≤ T .
Definition 5. Let E,F be normed lattices and T : E → F is called KB-operator for every
bounded increasing sequence (xn) in E+, there is an x ∈ E such that (Txn) converges to Tx in
norm.
Definition 6. Let E,F be normed lattices and τ ⊆ L(E,F ). We say that τ is a collectively KB
set of operators if, for every increasing bounded sequence (xn) in E+, there is an indexed subset
{xT}T∈τ of E satisfying {(Txn) : T ∈ τ} norm converges to {TxT}T∈τ .

A collectively AM -compact(b − AM compact, KB)- set of operators is a generalization of the
AM -compact(b−AM compact,KB) and quasi KB-operator. We investigate collective versions of
some operators such as AM -compact, b− AM compact, KB and quasi-KB operators.

We discuss the domination problem for collectively AM -compact,b − AM compact, KB and
quasi-KB sets of operators.

For this subject, we give the following references.
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For a smooth closed curve γ with curvatures k1 > 0, k2 > 0, and k3 in the four-dimensional
Euclidean space E4, we explore the well-defined integral quantity

J(γ) =

∮

γ

√
k21 + k22 + k23ds,

which is invariant under rigid motions and dilatations in E4. We address the problem of determining
the sharp lower bound for J(γ), see [1].

Clearly, J(γ) ≥ 2π in view of the classical Fenchel inequality
∮
γ

k1ds ≥ 2π. However, if γ has

constant curvatures then the stronger estimate J(γ) ≥ 2
√
5π holds true, and this estimate is sharp,

see [2].
We conjecture that the same inequality J(γ) ≥ 2

√
5π holds true in the general situation as well.

At the moment, the conjecture remains still unproven.
We consider the limit situation where γ evolves smoothly into a unit circle. Specifically, we

introduce a smooth family of closed curves {γε}ε≥0 in E4 represented by the position vector x(t) =
(cos t, sin t, εw1(t), εw2(t)), where w1(t), w2(t) are smooth 2π-periodic functions. This family is
viewed as a perturbation of the unit circle γ0.

Clearly, all the geometric features of γε are determined by the vector-function w(t) = (w1(t), w2(t)).
In particular, γε with ε > 0 satisfy k1 > 0 and k2 > 0 if and only if w(t) satisfies w′′ + w 6= 0. In
this generic case, the value of J(γε) is well-defined for ε > 0, and one can explore its limit value as
ε→ 0.

We provide a geometrically meaningful description for the value of lim
ε→0

J(γε) in terms of the
planar curve Γ represented by p = w′′ +w, and then we demonstrate, as the main result, that this
limit value cannot be less that 2

√
5π,

lim
ε→0

J(γε) ≥ 2
√
5π,

for any choice of w(t). Moreover, the inequality is proved to be sharp in the sense that one can
chose w(t) with w′′ + w 6= 0 so that lim

ε→0
J(γε) = 2

√
5π. Thus, the proved statement provides novel

non-trivial arguments supporting the conjecture under consideration.
The proof of the main result is based on the use of the Sturm–Hurwitz theorem regarding the

number of zeroes of trigonometric polynomials / Fourier series, see [3], [4]. We apply this celebrated
theorem of the mathematical analysis to estimate a specific tangency complexity of the planar curve
Γ leading to the desired lower bound for lim

ε→0
J(γε).
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The central binomial coefficients are defined for integer n ≥ 0 by
(
2n
n

)
= (2n)!

(n!)2
. These numbers are

closely related to the well-known Catalan numbers, given by Cn = 1
n+1

(
2n
n

)
. The harmonic numbers

of order m and the odd harmonic numbers of order m are defined respectively by H(m)
n =

n∑
k=1

1
km

and O(m)
n =

n∑
k=1

1
(2k−1)m

with H(m)
0 = O

(m)
0 = 0. The cases H(1)

n = Hn and O(1)
n = On correspond to

the ordinary harmonic and odd harmonic numbers, respectively.
In this note, we present several infinite series involving central binomial coefficients, Catalan

numbers, harmonic numbers, products of harmonic numbers, and mixed products with odd har-
monic numbers. The method used to derive these expressions relies on integration—a classical
technique that has recently gained renewed attention in the literature [1–3], among others.
Theorem 1. We have

∞∑

n=1

(
2n
n

)

22n
Hn

n
=
π2

3
,

∞∑

n=0

CnHn+1

22n
= 4,

∞∑

n=0

(
2n
n

)

22n
Hn+r

n+ r
=

22r+1

(
2r
r

) Or

r
, r 6= 0,

and more generally, for s− 1
2
6∈ Z<0, r 6= 0, and r + s− 1

2
6∈ Z<0,

∞∑

n=0

(
2n
n

)

22n
Hn+r+s −Hs(

n+r+s
s+1

) =
2(s+ 1)

2s+ 1

Hr+s−1/2 −Hs−1/2(
r+s−1/2
r−1

) .

Theorem 2. We have
∞∑

n=0

On+1

(n+ 1) (2n+ 1)
=
π2

6
,

∞∑

n=0

CnOn+3

22n (2n+ 5)
=

8

9
+

π

32
− π ln 2

4
,

∞∑

n=0

CnHn+r+1

22n+1(n+ r + 1)
=
Hr

r
− 22r

4r2 − 1

Or+1(
2(r−1)
r−1

) ,
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and more generally, for s, r ∈ C \ Z≤0, and r + s− 1
2
6∈ Z<0,

∞∑

n=0

Cn
22n+1

Hn+r+s −Hs−1(
n+r+s

s

) =
Hr+s−1 −Hs−1(

r+s−1
s

) − 2s

2s+ 1

Hr+s−1/2 −Hs−1/2(
r+s−1/2
r−1

) .

Theorem 3. We have
∞∑

n=1

HnHn+1

n (n+ 1)
=
π2

6
+ 2ζ(3),

∞∑

n=1

HnOn

(2n− 3)(2n− 1)
=
π2

36
− 1

6
+

1

2
ln 2,

∞∑

n=1

HnHn+s+1

(n+ s)(n+ s+ 1)
=
Hs

s
+
H2
s +H

(2)
s

s
, s 6= 0,

where ζ(s) =
∞∑
n=1

1
ns , (<(s) > 1) is the Riemann zeta function. More generally, for 0 ≤ r ∈ C \Z<0,

s ∈ C \ Z≤0,
∞∑

n=1

HnHn+r+s+1(
n+r+s+1

r+2

) =
r + 2

s
(
r+s
r

)Hr+1(Hr+s −Hr) +
r + 2

s
(
r+s
r

)
(
(Hr+s −Hr)

2 +H
(2)
r+s −H(2)

r

)
.

Theorem 4. We have
∞∑

n=1

(
2n
n

)

22n
On

n
=

∞∑

n=1

22nHn

n(n+ 1)
(
2(n+1)
n+1

) ,
∞∑

n=1

CnOn

22n
=

∞∑

n=1

22(n+1)Hn

(n+ 1)(n+ 2)
(
2(n+2)
n+2

) ,

and more generally, if r ∈ Z≥0, then
∞∑

n=1

(
2n
n

)
On

22n (n+ r)
=

∞∑

n=1

22(n+r)Hn

(n+ r)(n+ r + 1)
(
2(n+r+1)
n+r+1

) .

Theorem 5. For all x ∈ [−1/4, 1/4),

2
√
1− 4x

∞∑

n=1

(
2n

n

)
HnOnx

n

=
π2

2
+ Li2(1− 4x)− 4Li2

(√
1− 4x

)
+ ln(1− 4x)

(
ln
(1− 4x

|x|
)
− 1− sgnx

2
πi

)
,

where Li2(x) denotes the dilogarithm function, defined by Li2(x) =
∞∑
k=1

xk

k2
, |x| ≤ 1.

Theorem 6. We have
∞∑

n=1

CnHnOn

22n
=
π2

2
+ 4 ln 2,

∞∑

n=1

CnHnOn

22n (n+ 2)
= −14

9
+
π2

6
+

4

9
ln 2,

∞∑

n=1

HnOn

(2n+ 1) (2n+ 3)
=

1

2
+
π2

24
− 1

2
ln 2,

and, more generally, for r ∈ C \ Z≤0,
∞∑

n=1

(
2n
n

)
(
n+(r+1)/2

n

)HnOn

22n
=

2(r + 1)

r2

(
Hr −Hr/2 −

r

4
H

(2)
r/2 +

π2

24
r − ln 2 + 2

r

)
.
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On non-topologizable semigroups of the bicyclic monoid
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E-mail: oleg.gutik@lnu.edu.ua

In this paper we shall follow the semigroup terminology of [1, 2, 4, 5].
Throughout these abstract we always assume that all topological spaces involved are Hausdorff

— unless explicitly stated otherwise.
Definition 1. Let X, Y and Z be topological spaces. A map f : X × Y → Z, (x, y) 7→ f(x, y), is
called

(i) right [left] continuous if it is continuous in the right [left] variable; i.e., for every fixed x0 ∈ X
[y0 ∈ Y ] the map Y → Z, y 7→ f(x0, y) [X → Z, x 7→ f(x, y0)] is continuous;

(ii) separately continuous if it is both left and right continuous;
(iii) jointly continuous if it is continuous as a map between the product space X × Y and the

space Z.
Definition 2. Let S be a non-void topological space which is provided with an associative mul-
tiplication (a semigroup operation) µ : S × S → S, (x, y) 7→ µ(x, y) = xy. Then the pair (S, µ) is
called

(i) a right topological semigroup if the map µ is right continuous, i.e., all interior left shifts
λs : S → S, x 7→ sx, are continuous maps, s ∈ S;

(ii) a left topological semigroup if the map µ is left continuous, i.e., all interior right shifts
ρs : S → S, x 7→ xs, are continuous maps, s ∈ S;

(iii) a semitopological semigroup if the map µ is separately continuous;
(iv) a topological semigroup if the map µ is jointly continuous.

We usually omit the reference to µ and write simply S instead of (S, µ). It goes without saying
that every topological semigroup is also semitopological and every semitopological semigroup is
both a right and left topological semigroup.

A topology τ on a semigroup S is called:
• a semigroup topology if (S, τ) is a topological semigroup;
• a shift-continuous topology if (S, τ) is a semitopological semigroup;
• an left-continuous topology if (S, τ) is a left topological semigroup;
• an right-continuous topology if (S, τ) is a right topological semigroup.

The bicyclic monoid C (p, q) is the semigroup with the identity 1 generated by two elements p
and q subjected only to the condition pq = 1. The semigroup operation on C (p, q) is determined
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as follows:

qkpl · qmpn =





qk−l+mpn, if l < m;
qkpn, if l = m;
qkpl−m+n, if l > m.

We define the following subsets of the bicyclic monoid
C+(p, q) =

{
qipj ∈ C (p, q) : i ⩽ j

}
and C−(p, q) =

{
qipj ∈ C (p, q) : i ⩾ j

}
.

For an arbitrary non-negative integer k we define
C+k(a, b) =

{
biai+s ∈ C+(a, b) : s ⩾ k, s ∈ ω

}
.

Fix an arbitrary infinite subset X of ω. Latter we shall assume that X = {xi : i ∈ ω} where {xi}i∈ω
is a steadily increasing sequence in ω. Put

CX
+k(a, b) = C+k(a, b) ∪ {bxiaxi ∈ C+(a, b) : i ∈ ω} .

The set CX
+k(a, b) is a subsemigroup of C+(a, b). By dual way we define the subsemigroup CX

−k(a, b)
of C−(a, b).
Theorem 3. The monoid C+(a, b) contains continuum many non-isomorphic subsemigroups of
the forms CX

+k(a, b), where k is a positive integer and X is an infinite subset of ω, such that every
left-continuous Hausdorff topology on CX

+k(a, b) is discrete.
Theorem 4. The monoid C−(a, b) contains continuum many non-isomorphic subsemigroups of
the forms CX

−k(a, b), where k is a positive integer and X is an infinite subset of ω, such that every
right-continuous Hausdorff topology on CX

+k(a, b) is discrete.
Proposition 5. The monoid C+(a, b) contains continuum many non-isomorphic subsemigroups
of the forms CX

+k(a, b), where k is a positive integer and X is an infinite subset of ω, and there
exists a Hausdorff topology τ on CX

+k(a, b) such that the semigroup operation on (CX
+k(a, b), τ) is

left-continuous but it is not right-continuous.
Proposition 6. The monoid C−(a, b) contains continuum many non-isomorphic subsemigroups of
the forms CX

−k(a, b), where k is a positive integer and X is an infinite subset of ω, and there exists a
Hausdorff topology τ on CX

−k(a, b) such that the semigroup operation on (CX
−k(a, b), τ) the semigroup

operation is left-continuous but it is not right-continuous.
The set CZ = Z× Z with the following semigroup operation

(k, l) · (m,n) =





(k − l +m,n), if l < m;
(k, n), if l = m;
(k, l −m+ n), if l > m.

is called the extended bicyclic semigroup [6]. Every Hausdorff shift-continuous topology on the
semigroup CZ is discrete [3]. We construct continuum subsemigroups S of the extended bicyclic
semigroup CZ such that the statements of Theorem 3 and Propositions 5 (Theorem 4 and Proposi-
tions 6) hold for S and every element of S is not maximal with the respect to the induced natural
partial order from the inverse semigroup CZ.
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sub-Riemannian Lie groups
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A sub-Riemannian manifold is a smooth manifold M together with a completely non-integrable
smooth distribution H on M (it is called a horizontal distribution) and a smooth field of Euclidean
scalar products 〈·, ·〉H on H (it is called a sub-Riemannian metric). In particular, 〈·, ·〉H can be
constructed as a restriction of some Riemannian metrics 〈·, ·〉 on M to H. Here we will assume
that all sub-Riemannian structures are of this form. Let Σ be a smooth oriented surface in a three-
dimensional sub-Riemannian manifold M . If Nh is the orthogonal projection of the unit normal
field N of Σ (in the Riemannian sense) onto H and dΣ is the Riemannian area form of Σ, then the
sub-Riemannian area of a domain D ⊂ Σ is defined as A(D) =

∫
D

|Nh| dΣ. The normal variation of

the surface Σ defined by a smooth function u is the map ϕ : Σ× I →M : ϕs(p) = expp(su(p)N(p)),
where I is an open neighborhood of 0 in R and expp is the Riemannian exponential map in p. Denote
A(s) =

∫
Σs

|Nh| dΣs, where Σs = ϕs(Σ). Then A′(0) is called the first (normal) area variation defined

by ϕ, and A′′(0) is called the second one. A surface Σ is called minimal if A′(0) = 0 for any normal
variations with compact support in Σ \ Σ0, where Σ0 = {p ∈ Σ | Nh(p) = 0} is the singular set
of Σ. A minimal surface Σ is called stable if A′′(0) ≥ 0 for any normal variations with compact
support in Σ\Σ0. We will call a surface Σ in a three-dimensional sub-Riemannian manifold vertical
if TpΣ ⊥ Hp for each p ∈ Σ. In particular, for such surfaces Nh = N and Σ0 = ∅.

In [1] we proved that a vertical surface Σ is minimal in the sub-Riemannian sense if and only if
it is minimal in the Riemannian sense and derived the following second variation formula:

A′′(0) =

∫

Σ

− (X(u)− 〈∇NX,N〉u)2 + |∇Σu|2 −
(
Ric (N,N) + |B|2

)
u2 dΣ,

where ∇ and Ric are the Riemannian connection and the Ricci tensor of M respectively, X is the
unit normal vector field of H (which is tangent to Σ because it is vertical), ∇Σ and B are the
Riemannian gradient and the second fundamental form of Σ respectively. It follows that if Σ is
stable in the sub-Riemannian sense, it is also stable in the Riemannian sense.

The three-dimensional Riemannian Heisenberg group (also known as the three-dimensional
Thurston geometry Nil) is the space R3 with coordinates (x, y, z) and with the following orthonor-
mal basis of left-invariant vector fields defined by its nilpotent Lie group structure:

X1 =
∂

∂x
− y

2

∂

∂z
, X2 =

∂

∂y
+
x

2

∂

∂z
, X3 =

∂

∂z
.

Theorem 1. Let a sub-Riemannian structure on Nil be defined by a left-invariant two-dimensional
horizontal distribution. Then its normal field should be of the form X = 1√

λ2+µ2+1
(λX1+µX2+X3).
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If λ = µ = 0 then a complete connected vertical surface in this sub-Riemannian manifold is
minimal if and only if it is a vertical Euclidean plane. In the other case it is minimal if and only if
it is a vertical Euclidean plane over a straight line in the (x, y)-plane that has the direction (λ, µ).
All these surfaces are stable in the sub-Riemannian sense and thus in the Riemannian sense.
The three-dimensional Thurston geometry Sol is the space R3 with coordinates (x, y, z) and

with the following orthonormal basis of left-invariant vector fields defined by its solvable Lie group
structure:

X1 = e−z
∂

∂x
, X2 = ez

∂

∂y
, X3 =

∂

∂z
.

Theorem 2. Let a sub-Riemannian structure on Sol be defined by a left-invariant two-dimensional
horizontal distribution. Then its normal field should be of the form X = 1√

λ2+µ2+ν2
(λX1 + µX2 +

νX3), where λµ 6= 0.
If ν 6= 0 then a complete connected vertical surface in this sub-Riemannian manifold is minimal

if and only if it is cylindrical and can be parameterized either as

r(s, t) =

(
x0 −

λ

ν
e−s, t, s

)
or as r(s, t) =

(
t, y0 +

µ

ν
es, s

)
.

If ν = 0 then a complete connected vertical surface is minimal if and only if it is a horizontal
Euclidean plane z = z0 or λ = ±µ and the surface is a ”hyperbolic helicoid” (previously described
in [2]) with the parameterization

r(s, t) =

(
x0 +

1√
2
e−ts, y0 ±

1√
2
ets, t

)
.

All these surfaces are stable in the sub-Riemannian sense and thus in the Riemannian sense.

The three-dimensional Thurston geometry ˜SL(2,R) is the universal covering of the special linear
group SL(2,R). It also can be described as the universal covering of the unit tangent bundle of
the hyperbolic plane H2 with the Sasaki metric. Thus, using the half-plane model of H2, we can
present ˜SL(2,R) as the half-space {(x, y, z) ∈ R3 | y > 0} with the orthonormal frame

Y1 = y
∂

∂x
− ∂

∂z
, Y2 = y

∂

∂x
, Y3 =

∂

∂z
.

Note that the fields Y1 and Y2 here are not left-invariant.
Theorem 3. A two-dimensional horizontal distribution H = X⊥, whose normal field X is a linear
combination of the fields Y1–Y3 with constant coefficients, defines a sub-Riemannian structure on
˜SL(2,R) (i.e., is its horizontal distribution) if and only if X is of the form 1√

λ2+µ2+1
(λY1+µY2+Y3),

where λ 6= −1. This sub-Riemannian structure allows vertical minimal surfaces only for λ = 0 and
λ = 1.
If µ 6= 0 then a complete connected vertical surface is minimal if and only if it is a half-plane

x = x0 for λ = 0 or a half-plane z = z0 for λ = 1.
If µ = 0 and λ = 1 then a complete connected vertical surface is minimal if and only if it is

either a half-plane z = z0 or can be parameterized as

r(s, t) =
(
y0s cos t, y0 cos t,

√
2t+ z0

)
.

If µ = λ = 0 then a complete connected vertical surface in this sub-Riemannian manifold is
minimal if and only if is a cylinder over a geodesic in H2 (see, e.g., [3]).
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All these surfaces are stable in the sub-Riemannian sense and thus in the Riemannian sense.
We also find vertical minimal surfaces of a left-invariant sub-Riemannian structure defined by

a horizontal distribution H = X⊥, where X = y cos z ∂
∂x

+ y sin z ∂
∂y
− cos z ∂

∂z
, and establish their

stability.
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Rational factorization of Lax type flows in the space dual
to the centrally extended Lie algebra of fractional
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The Lie-algebraic approach to the rational factorization of Lax type flows in spaces dual to
certain operator Lie algebras (see, for example, [1]) and central extensions of some of them is
developed for the central extension of the Lie algebra Aα := A0{{Dα, D−α}}, consisting of fractional
integro-differential operators such as aα :=

∑
j∈Z+

ajD
α(pα−j), where A0 := A{{D,D−1}} is the Lie

algebra of ordinary integral-differential operators, A := W∞
2 (R;C)∩ W∞

∞ (R;C), Dα : A → A is
a Riemann-Liouville fractional derivative, α ∈ C \ Z, Reα 6= 0, aj ∈ A0, j ∈ Z+, pα ∈ N is an
order of the fractional integro-differential operator aα. This Lie algebra possesses the standard
commutator [aα, bα] = aα ◦ bα − bα ◦ aα, and invariant with respect to this commutator scalar
product (aα, bα) :=

∫
R resD (resDα (aα◦bαD−α))dx, where aα, bα ∈ Aα, ”◦” is a symbol of the operator

product, resDα denotes a coefficient at D−α for any fractional integral-differential operator as well
as resD denotes a coefficient at D−1 for any ordinary integral-differential operator.

On the central extension Âα := Āα ⊕C of the parameterized Lie algebra Āα :=
∏

y∈S1 Aα by the
Maurer-Cartan 2-cocycle ω2(aα, bα) := 〈aα, ∂bα/∂y〉, where 〈aα, bα〉 =

∫
S1(aα, bα)dy, aα, bα ∈ Āα,

there exist the commutator
[(aα, d), (bα, e)] = ([aα, bα], ω2(aα, bα)), (aα, d), (bα, e) ∈ Âα,

and corresponding invariant scalar product
((aα, d), (bα, e)) = 〈aα, bα〉+ ed. (1)

The Lie algebra Āα allows the splitting into the direct sum of its two Lie subalgebras Āα =
Āα,+ ⊕ Āα,−, where Āα,+ is the Lie subalgebra of the formal power series by the operator Dα. On
the space Â∗

α dual to the central extension Âα with respect to the scalar product (1) theR-deformed
commutator

[(aα, d), (bα, e)]R = ([aα, bα]R, ω2,R(aα, bα)),
[aα, bα]R = [Raα, bα] + [aα,Rbα], ω2,R(aα, bα) = ω2(Raα, bα) + ω2(aα,Rbα),



43

where R : Āα → Āα is a space endomorphism, R = (P+ − P−)/2, P± are projectors on Aα,±
accordingly, generates the Lie-Poisson bracket

{γ, µ}R(lα, c) = 〈lα, [∇γ(lα),∇µ(lα)]R〉+ cω2,R(∇γ(lα),∇µ(lα)) := 〈∇γ(lα),Θ∇µ(lα)〉, (2)
where γ, µ ∈ D(Ā∗

α) are smooth by Frechet functionals on Ā∗
α ' Āα, ”∇” is a symbol of the functional

gradient, the Poisson operator Θ : T ∗(Ā∗
α)→ T (Ā∗

α) acts by the rule
Θ : ∇γ(lα) 7→ −[lα − c∂/∂y, (∇γ(lα))−] + [lα − c∂/∂y,∇γ(lα)]≤0

for any smooth by Frechet functional γ ∈ D(Ā∗
α), T (Ā∗

α) and T ∗(Ā∗
α) are tangent and cotangent

spaces to Ā∗
α accordingly, (lα, c) ∈ Â∗

α ' Âα, lα ∈ Ā∗
α is a fractional integro-differential operator of

the order qα ∈ N. By means of the Casimir invariants γn ∈ I(Â∗
α), n ∈ N, satisfying the relationship

[lα − c∂/∂y,∇γn(lα)] = 0 at a point (lα, c) ∈ Â∗
α, as Hamiltonians, in the dual space Â∗

α ' Âα the
Lie-Poisson bracket (2) determimes the hierarchy of Lax type Hamiltonian flows in the form

∂lα/∂tn = [(∇γn(lα))+, lα − c∂/∂y], tn ∈ R, n ∈ N, (3)
where the subscript ”+” denotes the projection of the corresponding element from Āα on the Lie
subalgebra Āα,+ and ∇γn(lα) :=

∑
j∈Z+

an,jD
α(n−j). One considers another hierarchy of Lax type

Hamiltonian flows on the dual space Â∗
α such as

dlα/dtn = [(∇γn(lα))+, l̃α − c∂/∂y], tn ∈ R, n ∈ N, (4)
for some fractional integro-differential operator l̃ ∈ Ā∗

α of the order qα ∈ N, which is related with
the operator lα ∈ Ā∗

α by the generalized gauge transformation
l̃α(0)− c∂/∂y = Bα(0)

−1(lα(0)− c∂/∂y)Bα(0), (5)
where Bα(0) ∈ Āα,+ is some fractional differential operator of the order sα ∈ N with constant
coefficients, at the initial moment of the time tn ∈ R for every n ∈ N.
Theorem 1. If for every n ∈ N at the initial moment of the time tn ∈ R the fractional integro-
differential operators lα, l̃α ∈ g̃∗ of the order qα ∈ N are related by the relationship (5), there exist
such fractional differential operators Aα, Bα ∈ Āα,+ of the orders qα+ sα and sα accordingly, where
sα ∈ Z+, sα < qα, that the equalities

lα = AαB
−1
α , l̃α = B−1

α (Aα − c∂Bα/∂y) (6)
hold. The operators Aα, Bα ∈ Āα,+ satisfy the following systems of evolution equations

dAα/dtn = (∇γn(lα))+Aα − Aα(∇γn(l̃))+ + c(∂(∇γn(lα))+/∂y)Bα,

dBα/dtn = (∇γn(lα))+Bα − Bα(∇γn(l̃α))+, n ∈ N, (7)
or, equivalently,

dAα/dtn = (Aα(∇γn(lα))−)+ − ((∇γn(l̃α))−Aα)+ − c((∂(∇γn(lα))−/∂y)Bα)+,

dBα/dtn = (Bα(∇γn(lα))−)+ − ((∇γn(l̃α))−Bα)+, n ∈ N.
which possess an infinite sequence of the conservation laws Hn ∈ D(Āα,+ × Āα,+), n ∈ N, in the
forms

Hn(Aα, Bα) := γn(lα)|lα=AαB
−1
α

= γn(l̃α)|l̃α=B−1
α (Aα−c∂Bα/∂y)

.

Theorem 2. For every n ∈ N the system of evolution equations (7), given on the subspace
Āα,+ × Āα,+ ⊂ Āα × Āα, is Hamiltonian with respect to the Poisson bracket {., .}L which arises as
a reduction of the Poisson bracket {., .}L̄ with the corresponding Poisson operator L̄ = (P ′)−1(Θ⊕
Θ̃)(P ′∗)−1, where Θ̃ is a Poisson operator generating the Poisson bracket (2) at a point l̃ ∈ Ā∗

α,
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P ′∗ : T ∗(Ā∗
α⊕Ā∗

α)→ T ∗(Āα×Āα) is an operator adjoint to the Frechet derivative P ′ : T (Āα×Āα)→
T (Ā∗

α⊕Ā∗
α) of the Backlund transformation P : (Aα, Bα) ∈ Āα×Āα 7→ (lα, l̃α) ∈ Ā∗

α⊕Ā∗
α, determined

by the equalities (6), (P ′∗)−1 is inverse to one, on Āα,+×Āα,+ and Hamiltonians H̄n ∈ D(Āα,+×Āα,+)
in the forms

H̄n(Aα, Bα) := γn(lα)|lα=AαB
−1
α

+ γn(l̃α)|l̃α=B−1
α (Aα−c∂Bα/∂y)

, n ∈ N.

In the case of c = 0 the second Hamiltonian representation for the hierarchy (7) is also found.
The rational factorization method for the central extension Âα is applied to construct a new

integrable hierarchy of two-dimensional nonlinear dynamical systems with fractional derivatives
by one spatial variable as well as a new integrable hierarchy of two-dimensional hydrodynamic
Benney-type systems, which is its quasiclassical approximation.

REFERENCES
[1] Oksana Hentosh, Anatolij Prykarpatski. Rational factorization of Hamiltonian flows in the space dual to the

Lie algebra of fractional integro-differential operators and integrable Benney-type hydrodynamic systems. J. of
Mathematical Sciences, 279(3) : 308–329, 2024.

Criteria of optimality of some classes of simple functions
on surfaces with the boundary

Bohdana Hladysh
(University of Applied Sciences in Konin, Konin, Poland)

E-mail: bohdanahladysh@gmail.com
Oleksandr Pryshliak

(Taras Shevchenko National University of Kyiv, Kyiv, Ukraine)
E-mail: prishlyak@yahoo.com

Smooth functions are the tool of research in many scientific fields. Their classification and
optimality problems are important enough. There are a number of papers dedicated to functions
with non-degenerated critical points on the boundary of a surface [1, 3, 4, 5, 7, 8] and with inner
[2, 10] and boundary [6, 9] isolated critical points on the low-dimensional manifolds.

A function is optimal if it has the smallest number of critical points among all functions on
present surface (if such exists). Also the function, which has no more than one critical point on
each level line, is called a simple function.

A simple Morse function being defined on a surface with the boundary, is called a mm-function,
if its restriction to the boundary is also a Morse function and all critical points belong to the
boundary of the surface.

In this thesis we have presented the criterias of optimality of the following classes of simple
functions: (1) mm-functions on a surface with the boundary; (2) Morse functions on a closed ori-
ented connected surface; (3) functions with isolated critical points on the boundary of a connected
surface with the connected boundary.
Theorem 1. A mm-function being defined on a surface of genus g with k components of the
boundary is optimal if and only if it has 4g+2k critical points if the surface is oriented and 2g+2k
critical points if the surface is non-oriented.

A function is polar if it has exactly one minimum and one maximum point on a present manifold.
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Theorem 2. A Morse function on a closed oriented surface is optimal i and only if it is polar on
a present surface.
Theorem 3. Mm-function on a smooth compact oriented surface with the boundary is optimal if
and only if it is polar on a present surface.

Let M be a smooth compact oriented surface with the connected boundary ∂M and let f :M →
R be a smooth function defined on M with finitely many critical points on the boundary. Remark
that the number of critical points is finite is equivalent to their isolatedness. Let CP (f) (ICP (f))
be a set of (isolated) critical points of the function f and f∂ be a restriction of the function f to
the boundary ∂M of the surface M . Then we are going to consider the following set of functions:

Θ(M) = {f :M → R|f ∈ C∞(M), CP (f) = ICP (f) = ICP (f∂), f is simple}
Theorem 4. Suppose that f ∈ Θ(M) and M is a connected compact surface with connected
boundary, which is not homeomorphic to a two-dimensional disk. Then the function f is optimal
if and only if it has exactly three critical points. Then the function f is optimal if and only if it
has exactly two critical points in the case of two-dimension disk.
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The Boltzmann kinetic equation plays an important role in the kinetic theory of gases. It is
describes the evolution of rarefied gases. For the hard sphere model, the equation has the form [1]

D(f) = Q(f, f); (1)

D(f) ≡ ∂f

∂t
+

(
V,
∂f

∂x

)
, (2)

Q(f, f) ≡ d2

2

∫

R3

dV1

∫

Σ

dα|(V − V1, α)|
[
f(t, x, V ′

1)f(t, x, V
′)− f(t, x, V )f(t, x, V1)

]
. (3)

The only exact solution to equation (1), which is known explicitly up to now, is the Maxwell
distribution M or simply Maxwellian (after J. C. Maxwell, Scottish physicist). It makes both parts
of the Boltzmann equation equal to zero, namely

D(M) = 0, Q(M,M) = 0. (4)
The solution to this equation (1)-(3) will be look for in the next form[2]

f(t, x, V ) =
∞∑

i=1

ϕi(t, x)Mi(t, x, V ), (5)

where coefficient functions ϕi(t, x) are nonnegative smooth functions on R4. Mi are Maxwellians (4),
which describe the eddy-like motion of the gas.

As a measure of the deviation between the parts of equation (1) we will consider a uniform-
integral error of the form:

∆ = sup
(t,x)∈R4

∫

R3

∣∣D(f)−Q(f, f)
∣∣dV. (6)

In the paper [2], we were obtained sufficient conditions for the coefficient functions and hydrody-
namic parameters appearing in the distribution, which enable one to make the analyzed error (6)
as small as desired.
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In this talk, we will consider the dynamics of the adjoint of a weighted composition operator
and we will give necessary and sufficient conditions for this adjoint operator to be topologically
transitive on the space of Radon measures on a locally compact Hausdorff space. Moreover, we
will provide sufficient conditions for this operator to be chaotic and we will give concrete examples.
Next, we will consider the real Banach space of signed Radon measures and we will give in this
context sufficient conditions for the convergence of Markov chains induced by the adjoint of an
integral operator. Also, we will illustrate this result by a concrete example. In addition, we will
present some structural results regarding the space of Radon measures. More precisely, we will
characterize a class of cones whose complement is spaceable in the space of Radon measures.

The talk will be based on [1].
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Analysis of Weak Associativity in Some Hyper-Algebraic
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In this paper, some chemical systems of Tin (Sn), Indium (In) and Vanadium (V) which are
represented by hyper-algebraic structures (SSn,⊕), (SIn,⊕) and (SV ,⊕) were studied. The analyses
of their algebraic properties and the probabilities of elements in dismutation reactions were carried
out with the aid of computer codes in Python programming language. It was shown that in the
dismutation reactions, the left nuclear (Nλ)-probability, middle nuclear (Nµ)-probability and right
nuclear (Nρ)-probability for each of the hyper-algebraic structures (SSn,⊕), (SIn,⊕) and (SV ,⊕)
is less than 1.000. This implies that, (SSn,⊕), (SIn,⊕) and (SV ,⊕) are non-associative hyper-
algebraic structures. Also, from the results obtained for FLEX-probability, it was shown that,
(SSn,⊕), (SIn,⊕) and (SV ,⊕) have flexible elements because the values of their FLEX-probabilities
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are 1.000 each. Hence, (SSn,⊕), (SIn,⊕) and (SV ,⊕) are flexible. Overall, (SV ,⊕) exhibited the
lowest measure of weak-associativity, (SSn,⊕) exhibited lower measure of weak-associativity, and
(SIn,⊕) exhibited a low measure of weak-associativity.
Definition 1. (Semihypergroup, Quasihypergroup, Hypergroup, Hv-group)

An hypergroupoid or polygroupoid (H, ◦) is the pair of a non-empty setH with an hyperoperation
◦ : H ×H → P (H)\{∅} defined on it.

An hypergroupoid (H, ◦) is called a semihypergroup if
(i): it obeys the associativity law a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ H, which means that

⋃

u∈ a◦b
u ◦ c =

⋃

v∈ b◦c
a ◦ v

An hypergroupoid (H, ◦) is called a quasihypergroup if
(ii): it obeys the reproduction axiom x ◦H = H = H ◦ x for all x ∈ H.
An hypergroupoid (H, ◦) is called an hypergroup if it is a semihypergroup and a quasihypergroup.

A hypergroupoid (H, ◦) is called an Hv-semigroup it obeys the weak associativity (WASS) con-
dition
(iii): x ◦ (y ◦ z) ∩ (x ◦ y) ◦ z 6= ∅ for all x, y, z ∈ H.

A hypergroupoid (H, ◦) is called an Hv-group if it is a quasihypergroup and a Hv-semigroup.
According to Davvaz et al. [1], all combinational probabilities for the set SSn = {Sn, Sn2+, Sn4+}

without energy can be displayed as follows in Table 1.1 and the major products are shown. (SSn,⊕)

TABLE 1.1. Dismutation reaction for tin (Sn)

⊕ Sn Sn2+ Sn4+

Sn Sn Sn, Sn2+ Sn2+

Sn2+ Sn, Sn2+ Sn2+ Sn2+, Sn4+

Sn4+ Sn2+ Sn2+, Sn4+ Sn4+

is not a quasihypergroup, not a semihypergroup, not a hypergroup and not an Hv-group. But it is
an Hv-semigroup. Summarily, even though (SSn,⊕) is not associative and has weak associativity,
it is commutative. However, it has an hyper-substructure that is associative, i.e. an hypergroup.
Definition 2. (Left nuclear element)

Let (P, ·) be a polygroupoid. The left nucleus pair of x ∈ P will be denoted by Nλ(x) and
defined as Nλ(x) = {(y, z) ∈ P × P | x · (yz) = (xy) · z}. x ∈ P will be said to be left nuclear if
Nλ(x) = P × P .
Definition 3. (Probability of left nuclear element/polygroupoid)

Let (P, ·) be a polygroupoid.
(1) The probability of an element x ∈ P being left nuclear will be denoted by PrNλ(P,·)(x) and

will be defined as PrNλ(P,·)(x) =
|Nλ(x)|
|P |2 .

(2) The probability of (P, ·) being left nuclear will be denoted by PrNλ
(P, ·) and defined as

PrNλ
(P, ·) =

∑

x∈P
PrNλ(P,·)(x)

|P | .
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Based on our Definition 2 and Definition 3, we have the result below.
Lemma 4. Let (P, ·) be a polygroupoid. Let the left nucleus of (P, ·) be defined as Nλ(P, ·) = {x ∈
P | x · (yz) = (xy) · z ∀ (y, z) ∈ P × P}. Then:

(1) Nλ(P, ·) = {x ∈ P | Nλ(x) = P × P} = {x ∈ P | x is left nuclear}.

(2) PrNλ
(P, ·) =

∑

x∈P
|Nλ(x)|

|P |3 .

Using Lemma 4, the results in Table 4.2 were gotten using the information in Table 1.1.

TABLE 4.2. Probability of elements in dismutation reaction tin, SSn

Probability of Properties Sn Sn2+ Sn4+ SSn
Left Nucleus PNλ

(·) 0.5556 0.7778 0.5556 0.6297
Middle Nucleus PNµ(·) 0.5556 0.7778 0.5556 0.6297
Right Nucleus PNρ(·) 0.5556 0.7778 0.5556 0.6297
Flexibility PFLEX(·) 1.0000 1.0000 1.0000 1.0000

Left Alternative Property PLAP (·) 0.6667 1.0000 0.6667 0.7778
Right Alternative Property PRAP (·) 0.6667 1.0000 0.6667 0.7778
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We investigated the existence of a special affinor structure on the surface, which is named after
the Catalan architect Antonio Gaudí.

The Gaudí’s surface is given in R3 by the general equation z = kxsin(y
a
), were k, a - some

constants, or by the parametric equations

x = u1, y = u2, z = ku1sin(
u2

a
).

As is known [2] an affinor structure F h
i (x) in Riemannian space (Vn(x), gij(x)) that satisfies

condition
F h
αF

α
i = eδhi , e = 0,±1, (1)
i, h, j, ... = 1, 2, ...n,
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is called
• elliptic if e = −1,
• hyperbolic if e = +1,
• m-parabolic when e = 0, rankF = m (2m < n),
• parabolic when e = 0, rankF = m (2m = n).

Usually the affinor structure F h
i is coordinated with the Riemannian metric gij as follows

giαF
α
j = −gjαF α

i . (2)
So, we are looking for an affinor structure F h

i (u) on the Gaudi’s surface (V G
2 (u), gij(u)), i, j, h =

1, 2 provided that a = k = 1, that satisfies conditions (1), (2). Then

(gij(u)) =

(
1 + Sin2u2 u1Cosu2Sinu2

u1Cosu2Sinu2 1 + (u1)2Cos2u2

)
,

As a result, it turned out that the Gaudi’s surface does not admit an affinor e-structure of
hyperbolic and parabolic types, but it admits an elliptic affinor structure

(F h
i (u)) =

(
−u1Cosu2Sinu2

1+sin2u2+(u1)2Cos2u2
−1−(u1)2Cos2u2

1+sin2u2+(u1)2Cos2u2

1+Sin2u2

1+sin2u2+(u1)2Cos2u2
u1Cosu2Sinu2

1+sin2u2+(u1)2Cos2u2

)
,

which is necessarily absolutely parallel:
F h
i,j = 0.

Here comma «,» is a sign of the covariant derivative in respect to the connection of V G
2 , that is

the Gaudi’s surface admits a Kähler structure [1].
In this case, the corresponding fundamental 2-form has the form

(Fij(u)) = (giα(u)F
α
j (u)) =

(
0 −(1 + sin2u2 + (u1)2Cos2u2)0,5

(1 + sin2u2 + (u1)2Cos2u2)0,5 0

)
.
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Reconstructing Morse functions with prescribed preimages
of single points
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Morse functions have been fundamental and strong tools in geometry. Morse functions are
also important and interesting objects in geometry. For Morse functions and handles, which are
fundamental tools and objects, see [5] for example.

We consider the following fundamental problem. This was essentially started in [1].
Problem 1. Let m > 1 be an integer and a1 < a2 real numbers. Let F1 and F2 be smooth closed
manifolds of dimension m − 1. Can we reconstruct a Morse function f̃a1,a2 : M̃a1,a2 → R on some
m-dimensional compact and connected manifold M̃a1,a2 onto the closed interval [a1, a2] enjoying
the following?
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(1) The boundary of M̃a1,a2 is diffeomorphic to F1tF2 and the preimage f̃−1
a1,a2

(ai) is diffeomor-
phic to Fi.

(2) There exists a unique critical value a and a is in the open interval (a1, a2). The preimage
f̃−1
a1,a2

(a) is connected.
In the case m = 2, Fi must be a disjoint union of circles and related studies had been presented

before. For this, Sharko [8] first considered the reconstruction of smooth functions with critical
points being represented by some elementary polynomials, on closed surfaces. Later, Michalak [6]
has explicitly solved Problem 1 in the case m = 2 (and Fi = tSm−1 where Sm−1 is the (m − 1)-
dimensional unit sphere). There, he has also classified Morse functions on given closed surfaces
in terms of their Reeb graphs: the Reeb graph of a smooth function c : X → R on a manifold X
with no boundary is the quotient space Wc of the manifold obtained by the equivalence relation
regarding that two points are equivalent if and only if they are in a same connected component of
a same preimage c−1(y). They are classical objects and have already appeared in [7]. They have
been fundamental and strong tools in understanding the manifolds compactly.

We present our study and result.
Definition 2 ([3]). A most fundamental handlebody of dimension m is a smooth, compact and con-
nected manifold diffeomorphic to one obtained by attaching finitely many handles to the boundary
Sm−1 of the m-dimensional unit disk Dm disjointly and simultaneously where at least one handle
is attached.
Example 3. The unit disk Dm and a compact manifold represented as a boundary connected sum
\j(S

kj × Dm−kj) (1 ≤ kj ≤ m − 1) (considered in the smooth category) are m-dimensional most
fundamental handlebodies.
Theorem 4 ([1, 2]). In the case each of connected components of F1 and F2 is the boundary of
some most fundamental handlebody of dimension m, Problem 1 is affirmatively solved.

A main ingredient of the proof is as follows: by attaching handles to F1 × {1} ⊂ F1 × [0, 1]
disjointly, simultaneously and suitably, we have an m-dimensional smooth compact and connected
manifold M̃a1,a2 whose boundary is diffeomorphic to F1 t F2. Note that [1] also shows local func-
tions around local extrema which belong to a certain class generalizing the class of Morse(-Bott)
functions, as another result.
Corollary 5 ([3]). In the case m = 4 with Fj (j = 1, 2) being orientable, Problem 1 is affirmatively
solved.

This comes from fundamental and important facts on 3-dimensional manifold theory.
We review elementary properties of closed surfaces and introduce some elementary numerical

invariants. A closed and connected surface F is diffeomorphic to a connected sum of the form
(]k1j1=1(S

1 × S1))](]k2j2=1(RP
2)) where k1 and k2 are non-negative integers. A closed and connected

surface F is orientable if and only if k2 = 0. We can define P (F ) = k2 as a topological invariant
for closed and connected surfaces and we can extend this to closed surfaces F which may not be
connected in the additive way. Note that if P (F ) is odd, then this is not the boundary of any
3-dimensional compact manifold. We can define another topological invariant Po(F ) for closed
surfaces F as the numbers of connected components Fj of F with P (Fj) being odd.
Theorem 6 ([2, 4]). Problem 1 is solved affirmatively in the case m = 3 if and only if either the
following three hold.

(1) Po(F1) = Po(F2).
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(2) Po(F1)− Po(F2) is even, Po(F1) > Po(F2), and Po(F1) ≤ P (F2).
(3) Po(F1)− Po(F2) is even, Po(F1) < Po(F2), and P (F1) ≥ Po(F2).
For this, the case Fi are orientable is a specific case of Theorem 4. The condition has been shown

to be sufficient in [2] first by explicit construction of Morse functions. [4] has shown that the con-
dition is also a necessary condition by investigating attachment of handles to F1×{1} ⊂ F1× [0, 1]
to have a smooth, compact and connected manifold M̃a1,a2 whose boundary is diffeomorphic to
F1 t F2, precisely. [4] is also a kind of addenda to [2].

The author was a member of the project JSPS Grant Number JP17H06128 and a member of the
project JSPS KAKENHI Grant Number JP22K18267. Our study has been conducted under their
support. The author has worked at Institute of Mathematics for Industry (https://www.jgmi.kyushu-
u.ac.jp/en/about/young-mentors/) and this is closely related to our study. The author is also a
researcher at Osaka Central Advanced Mathematical Institute (OCAMI researcher), supported by
MEXT Promotion of Distinctive Joint Research Center Program JPMXP0723833165.
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Umbilics on complete convex planes : The Toponogov
Conjecture
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In 1995, Victor Andreevich Toponogov [1] authored the following conjecture: “Every smooth non-
compact strictly convex and complete surface of genus zero has an umbilic point, possibly at
infinity“. In our talk, we will outline the 2024 proof in collaboration with Brendan Guilfoyle [2].
Theorem 1. [2] Assume that P ↪→ R3 be a proper embedded strictly convex surface, and assume
that it is diffeomorphic to the plane and C3,α - regular. Then

inf
p∈P
|κ1(p)− κ2(p)| = 0.
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Namely we prove that, should a counter-example to the Conjecture exist, (a) the Fredholm index
of an associated Riemann Hilbert boundary problem for holomorphic discs is negative [3]. Thereby,
(b) no such holomorphic discs survive for a generic perturbation of the boundary condition (these
form a Banach manifold under the assumption that the Conjecture is incorrect). Finally, however,
(c) the geometrization by a neutral Kaehler metric [4] of the associated model allows for Mean
Curvature Flow [5] with mixed Dirichlet – Neumann boundary conditions to generate a holomorphic
disc from an initial spacelike disc. This completes the indirect proof of said conjecture as (b) and
(c) are in contradiction. Note that our regularity assumption is stronger than the minimal required
in the context, which would be twice continuously differentiable.

REFERENCES
[1] V. A. Toponogov On conditions for existence of umbilical points on a convex surface , Siberian Mathematical

Journal, vol 36 p 780–784, 1995
[2] B. Guilfoyle, W. Klingenberg, Proof of the Toponogov Conjecture on complete surfaces, Gokova Geom. Topol.

GGT, 17 (2024) 1–50.
[3] B. Guilfoyle, W. Klingenberg, Fredholm-regularity of holomorphic discs in plane bundles over compact surfaces.,

Annales de la Faculté des sciences de Toulouse (En ligne), (2020) 29(3), 565-576.
[4] B. Guilfoyle, W. Klingenberg, An indefinite Kaehler metric on the space of oriented lines, J. London Math. Soc.

(2005) 72.2, 497–509.
[5] B. Guilfoyle and W. Klingenberg, Higher codimensional mean curvature flow of compact spacelike submanifolds,

Trans. Amer. Math. Soc. 372.9 (2019) 6263–6281.

The p-adic class numbers of Z-covers of graphs
Reo Kobayashi∗

(Department of Mathematics, Faculty of Science, Ochanomizu University; 2-1-1 Otsuka,
Bunkyo-ku, 112-8610, Tokyo, Japan)
E-mail: kobayashi.reo@outlook.jp

Jun Ueki
(Department of Mathematics, Faculty of Science, Ochanomizu University; 2-1-1 Otsuka,

Bunkyo-ku, 112-8610, Tokyo, Japan)
E-mail: uekijun46@gmail.com

In the spirit of arithmetic topology, we propose to study the p-adic limit values of the number of
spanning trees in pro-p covers of graphs. This talk is based on a joint work [KU25] and will focus
on a specific example.

Let X be a finite connected graph, that is, a 1-dimensional CW complex. A spanning tree T of
X is a connected subgraph that contains all vertices and no loops. The number of spanning trees
of each X is denoted by k(X). A basic reference for graphs is [Ter11].

Suppose that X is the 8-graph, consisting of one vertex and two looped edges. Let s1, s2 denote
the elements of the fundamental group π1(X) represented by the two loops. We consider a specific
surjective homomorphism

ϕ : π1(X)→ Z; s1 7→ 1, s2 7→ 2.

The Z-cover X∞ → X corrreponding to Kerϕ is so-called the Fibonacci tower. The adjacency
matrix yields the Ihara zeta function and the Ihara polynomial I(t) = 4 − (t + 1/t) − (t2 + 1/t2).
We further put J(t) := t2I(t)/(t− 1)2 = t2 + 3t+ 1.

For each n ∈ Z>0, let Xn → X denote the Z/nZ-subcover. Then, Pengo–Vallieres [PV25,
Theorem 3.6] asserts that the number of spanning trees of Xn may be calculated by using the
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cyclic resultant Res(tn − 1, J(t)) =
∏

ζn=1 J(ζ) ∈ Z as
k(Xn) = k(X)n2−1|Res(tn − 1, J(t))|/J(1).

On the other hand, p being a prime number, Kisilevsky [Kis97] and Ueki–Yoshizaki [UY25] proved
that p-power-th cyclic resultant p-adically converges in the ring of p-adic integers Zp = lim←−n Z/p

nZ
and gave explicit formulae. For instanse, if Φm(t) ∈ Z[t] denote the m-th cyclotomic polynomial
and f(t) ∈ Z[t] satisfies f(t) ≡ Φm(t) mod p, then

lim
n→∞

Res(tpn − 1, f(t)) = Φm(1)

holds.
Combining the above, we obtain the following for the 8-graph X.

Theorem 1. The sequence (k(Xpn))n converges in Zp. We have
lim
n→∞

k(Xpn)/p
n ∈ Q ⇐⇒

iff
p = 2, 3, 5.

In addition, if we put rn := |Res(tn − 1, J(t))|, then we have
lim
n→∞

|r2n | = −3, lim
n→∞

|r3n | = 2, lim
n→∞

|r5n | = 0.

The non-5 part of |r5n | is |r5n |/52n+1. Fix an embedding Q ↪→ Q̂5 of an algebraic closure of Q into
the completion of an algebraic closure of the 5-adic number field. Let α, β denote the roots of J(t)
and let log denote the 5-adic logarithm. Then we have

lim
n→∞

|r5n |/52n+1 =
logα log β

5
∈ Z5.

We may observe that these sequences converge quickly:

If p = 2,
n 1 2 3 4 5 6

−Res(t2n − 1, J(t)) 5 45 2205 4870845 23725150497405 ...
−Res(t2n − 1, J(t)) mod 2n −3 −3 −3 −3 −3 −3

.

If p = 3,
n 1 2 3 4 5 6

Res(t3n − 1, J(t)) 20 5780 192900153620 ... ... ...
Res(t3n − 1, J(t)) mod 3n 2 2 2 2 2 2

.

If p = 5,
n 1 2 3 4 5 6

Res(t5n − 1, J(t)) 53 55 · 30012 57 · 30012 · 1584141679640457000012 ... ... ...
1

52n+1Res(t5n − 1, J(t)) mod 5n 1 1 1 376 2876 15376
.
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The concept of 2F-planar mapping (2FPM) of spaces with affine connection and Riemannian
spaces was defined by R. J. Kadem [1]. These mappings are a natural generalization of geodesic
[2] and F -planar mappings [3]. R. J. Kadem investigated general problems of 2FPM theory. In
particular, he proved that every such mapping preserves affinor structure.

We study 2FPM of Riemannian spaces with a special type of f -structure
(Vn, gij, F

h
i ) −→ (V n, gij, F

h
i ).

The fundamental equations of such a mapping in the common coordinate system (xi) with respect
to the 2FPM has the form:

Γ
h

ij(x) = Γhij(x) + ψ(i(x)δ
h
j) + φ(i(x)F

h
j)(x) + σ(i(x)F

h
|α|(x)F

α
j)(x), (1)

F h
i (x) = F

h

i (x),

giαF
α
j = −gjαF α

i , giαF
α
j = −gjαF α

i , (2)

F h
(i,j) = q(iF

h
j), (3)

F h
αF

α
β F

β
i + F h

i = 0, (4)
i, h, j, ... = 1, 2, ...n,

where Γhij,Γ
h

ij are the Christoffel symbols of Vn, V n, respectively; ψi(x), φi(x), σi(x), qi(x) are
certain covectors; F h

i (x) is affinor; brackets (i, j) denote the symmetrization with respect to the
corresponding indices; comma «,» is a sign of the covariant derivative in respect to the connection
of Vn.

We call an affinor structure F h
i that satisfies conditions (3) a generalized-recurrent structure and

qi(x) - the generalized-recurrent vector.
We have obtained the properties of the Riemannian and Ricci tensors of the generalized recurrent

f -space.
The relationship between vectors ψi(x), φi(x), σi(x), qi(x) under conditions (1), (2), (3), (4) was

found.
It is proved that the class of generalized recurrent spaces (Vn, gij, F

h
i ) is closed with respect

to 2FPM , that is the space (V n, gij, F
h
i ) under conditions (1), (2), (3), (4) is also generalized

recurrent, but the vector of generalized recurrence is generally not preserved:
F h
(i|j) = q̃(iF

h
j), (5)
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were «|» is a sign of the covariant derivative in respect to the connection of V n and
q̃i = qi − ψi + φαF

α
i + σi.
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Given a branched cover of the CP1 with a standard description of permutation representation
through σ1 · · · σr ∈ Sn such that the genus is 1 we give a computational criteria to answer a question
when these branched covers are of full moduli dimension.
Theorem 1. Given a cover represented by the permutation representation as above form a moduli
space of such. If there is an element of the fundamental group of such space ( which is the subgroup
of the braid group) acts on the homology basis of such cover with an element of an infinite order
then the cover is of the full moduli dimension ( i.e. a generic curve of genus 1 carries a function
with such permutation representation.)

The second application of these ideas is to compute fundamental groups of complex surfaces that
are covers of (CP 2 −D2)/SL2(C).

Weyl algebras and generalized symmetries
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Weyl algebras are fundamental objects in ring theory that arise from various perspectives in
mathematics and physics, and the development of their theory is related to such names as Dirac,
Heisenberg, Littlewood, Weyl, Segal, Dixmier and Kashiwara. Their feature is capturing the
noncommutativity of differential operators with polynomial coefficients, which makes these algebras
ubiquitous in abstract algebra, noncommutative geometry, representation theory and quantum
mechanics. The representation theory of Weyl algebras led to the development of the so-called
algebraic analysis, an advanced branch of algebra within whose framework several long-standing
conjectures have been proven.
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Following [1, 3], let K be a field of characteristic zero. The first Weyl algebra A1 is the associative
algebra over K generated by elements x and ∂ that satisfy the defining relation ∂x− x∂ = 1. The
Weyl algebra A1 is a central, simple, Noetherian, hereditary domain of Gelfand–Kirillov dimension
two which is canonically isomorphic to the ring of differential operators K[x][ d

dx ] with coefficients
from the polynomial ring K[x]. The Bergman’s diamond lemma [2] allows one to easily show that
the tuple (xk∂l | k, l ∈ N0) is a basis of A1. The nth Weyl algebra An is the tensor product
A1 ⊗ · · · ⊗ A1 of n copies of the first Weyl algebra.

From the perspective of symmetry analysis of differential equations, the first and the second real
Weyl algebras arise as the algebras of linear generalized symmetries of the linear (1+1)-dimensional
heat equation ut = uxx and of the remarkable (1+2)-dimensional Fokker–Planck equation ut+xuy =
uxx, see [5] and [8], respectively. The above is only one way the close relationship between these
two equations manifests itself. This relationship was revealed in the course of extended symmetry
analysis of the latter and former equations in [5, 6, 7] and [4, 8], but it can in fact be embedded in
a broader framework.

For each n ∈ N, consider the class Un of (ultra)parabolic linear second-order partial differential
equations with 1 + n independent variables t, x1, …, xn and dependent variable u, where the
corresponding (symmetric) matrices of coefficients of second-order derivatives of the dependent
variable u are of rank one, and the number n+1 of independent variables is essential: none among
them plays the role of a parameter even up to their point transformations. The equation

Fn : ut + x1ux2 + · · ·+ xn−1uxn = ux1x1

belongs to the class Un. Notably, the equations F1 and F2 coincide with the above linear heat and
remarkable Fokker–Planck equations, respectively. The classes U1 and U2 coincide with the classes
of parabolic linear second-order partial differential equation with two independent variables and of
ultraparabolic linear second-order partial differential equations with three independent variables,
respectively.

In this talk, we present the results of our in-depth preliminary analysis of the properties of
the equations Fn within their respective classes Un. Among many surprising observations and
conjectures, there are the following:

• The dimension of the essential Lie invariance algebra gessn of Fn is equal to 2n+ 4, and this
algebra is isomorphic to the algebra sl(2,R) ∈ρ2n−1⊕ρ0 h(n,R). The Levi factor fn and the
(nil)radical rn of gessn are isomorphic to the real degree-two special linear algebra sl(2,R)
and the rank-n Heisenberg algebra h(n,R), respectively. Here ρm denotes the standard real
irreducible representation of sl(2,R) in the (m+ 1)-dimensional vector space.
• The dimension of gessn is maximal among those of the essential Lie invariance algebras
of equations from the class Un, and each equation whose essential Lie invariance algebra
is of this maximal dimension is reduced to Fn by a point transformation in the space
R1+n
t,x1,...,xn × Ru.

• The essential point-symmetry group Gess
n of the equation Fn is isomorphic to the Lie group(

SL(2,R)nϱ2n−1⊕ϱ0 H(n,R)
)
× Z2, where H(n,R) denotes the rank-n Heisenberg group and

%m is the irreducible representation of the real degree-two special linear group SL(2,R) in
Rm+1.
• A complete list of discrete point symmetry transformations of the equation Fn that are
independent up to combining with each other and with continuous point symmetry trans-
formations of this equation is exhausted by the single involution I alternating the sign of u,
I : (t, x1, . . . , xn, u) 7→ (t, x1, . . . , xn,−u). Thus, the quotient group of the complete point-
symmetry pseudogroup Gn of Fn with respect to its identity component is isomorphic to Z2.
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• The algebra of canonical representatives of generalized symmetries of Fn is Σn = Λn∈Σ−∞
n .

Here Λn is the subalgebra of linear generalized symmetries of Fn, which is generated by act-
ing with the Lie-symmetry operators associated with the canonical basis of the complement
of the center 〈u∂u〉 in the (nil)radical rn of gessn on the elementary seed symmetry vector
field u∂u, and Σ−∞

n is the ideal associated with linear superposition of solutions of Fn.
• The algebra Λn is isomorphic to the Lie algebra A(−)

n associated with the nth Weyl algebra
An.
• A generalized vector field is a master symmetry of Fn in the sense of the definition given in
[7, p. 315] if and only if up to a triviality equivalence relation, it is a generalized symmetry
of Fn.
• The algebra Λn is two-generated as a Lie algebra, i.e., there is a pair of its elements such that
Λn coincides with its subalgebra containing all successive commutators (aka nonassociative
monomials) of these two elements.

This work introduces a substantial research program aimed at a deeper understanding of the
symmetry properties of linear second-order partial differential equations.

REFERENCES
[1] Bavula V.V., Structure of maximal commutative subalgebras of the first Weyl algebra, Ann. Univ. Ferrara 51

(2005), 1–14.
[2] Bergman G.M., The diamond lemma for ring theory, Adv. in Math. 29 (1978), 178–218.
[3] Dixmier J., Sur les algébres de Weyl. Bull. Soc. Math. France 96 (1968), 209–242.
[4] Koval S.D., Bihlo A. and Popovych R.O., Extended symmetry analysis of remarkable (1+2)-dimensional Fokker–

Planck equation, European J. Appl. Math. 34 (2023), 1067–1098, arXiv:2205.13526.
[5] Koval S.D. and Popovych R.O., Point and generalized symmetries of the heat equation revisited, J. Math. Anal.

Appl. 527 (2023), 127430, arXiv:2208.11073.
[6] Lie S., Über die Integration durch bestimmte Integrale von einer Klasse linear partieller Differentialgleichungen,

Arch. for Math. 6 (1881), 328–368; translation by N.H. Ibragimov: Lie S., On integration of a class of linear
partial differential equations by means of definite integrals, in CRC Handbook of Lie group analysis of differential
equations, vol. 2, CRC Press, Boca Raton, FL, 1995, pp. 473–508.

[7] Olver P.J., Application of Lie groups to differential equations, Springer, New York, 1993.
[8] Popovych D.R., Koval S.D. and Popovych R.O., Generalized symmetries of remarkable (1+2)-dimensional Fokker-

Planck equation, 16 pp, arXiv:2409.10348.



59

On the prime ends extension of unclosed inverse mappings
Victoria Desyatka

(Zhytomyr Ivan Franko State University)
E-mail: victoriazehrer@gmail.com

Zarina Kovba
(Zhytomyr Ivan Franko State University)
E-mail: victoriazehrer@gmail.com

Evgeny Sevost’yanov
(Zhytomyr Ivan Franko State University; Institute of Applied Mathematics and Mechanics,

Slov’yans’k)
E-mail: esevostyanov2009@gmail.com

The following statements contain itself some results on prime end boundary extension of quasi-
conformal mappings.
Theorem A. Under a quasiconformal mapping f of a collared domain D0 onto a domain D,

there exists a one-to-one correspondence between the boundary points of D0 and the prime ends of D.
Moreover, the cluster set C(f, b), b ∈ ∂D0, coincides with the impression I(P ) of the corresponding
prime end P of D (see [1, Theorem 4.1]).

Given f : D → D ′, we set C(f, x) := {y ∈ Rn : ∃ xk ∈ D : xk → x, f(xk) → y, k → ∞} and
C(f, ∂D) =

⋃
x∈∂D

C(f, x) .

Theorem B. Let f : D → Rn be quasiregular mapping with C(f, ∂D) ⊂ ∂f(D). If D is locally
connected at a point b ∈ ∂D and D ′ = f(D) is qc accessible at some point y ∈ C(f, b), then
C(f, b) = {y} (see [2, Theorem 4.2]).

The goal of this abstract is to consider mappings which are not closed. Let y0 ∈ Rn, 0 <
r1 < r2 < ∞ and A = A(y0, r1, r2) = {y ∈ Rn : r1 < |y − y0| < r2} . Given sets E, F ⊂ Rn

and a domain D ⊂ Rn we denote by Γ(E,F,D) a family of all paths γ : [a, b] → Rn such that
γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ D for t ∈ (a, b). If f : D → Rn, y0 ∈ f(D) and 0 < r1 < r2 <
d0 = sup

y∈f(D)

|y − y0|, then by Γf (y0, r1, r2) we denote the family of all paths γ in D such that

f(γ) ∈ Γ(S(y0, r1), S(y0, r2), A(y0, r1, r2)). Let Q : Rn → [0,∞] be a Lebesgue measurable function.
We say that f satisfies Poletsky inverse inequality at the point y0 ∈ f(D), if the relation

M(Γf (y0, r1, r2)) ⩽
∫

A(y0,r1,r2)∩f(D)

Q(y) · ηn(|y − y0|) dm(y) (1)

holds for any Lebesgue measurable function η : (r1, r2)→ [0,∞] such that
r2∫

r1

η(r) dr ⩾ 1 . (2)

Recall that a mapping f : D → Rn is called discrete if the pre-image {f−1 (y)} of each point
y ∈ Rn consists of isolated points, and is open if the image of any open set U ⊂ D is an open set
in Rn. Later, in the extended space Rn = Rn∪{∞} we use the spherical (chordal) metric h (see [3,
Definition 12.1]). Further, the closure A and the boundary ∂A of the set A ⊂ Rn we understand
relative to the chordal metric h in Rn.
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The boundary of D is called weakly flat at the point x0 ∈ ∂D, if for every P > 0 and for
any neighborhood U of the point x0 there is a neighborhood V ⊂ U of the same point such
that M(Γ(E,F,D)) > P for any continua E,F ⊂ D such that E ∩ ∂U 6= ∅ 6= E ∩ ∂V and
F ∩∂U 6= ∅ 6= F ∩∂V. The boundary of D is called weakly flat if the corresponding property holds
at any point of the boundary D. Consider the following definition, see e.g. [1]. The boundary of
a domain D in Rn is said to be locally quasiconformal if every x0 ∈ ∂D has a neighborhood U
that admits a quasiconformal mapping ϕ onto the unit ball Bn ⊂ Rn such that ϕ(∂D ∩ U) is the
intersection of Bn and a coordinate hyperplane. The sequence of cuts σm, m = 1, 2, . . . , is called
regular, if σm ∩σm+1 = ∅ for m ∈ N and, in addition, d(σm)→ 0 as m→∞. If the end K contains
at least one regular chain, then K will be called regular. We say that a bounded domain D in
Rn is regular, if D can be quasiconformally mapped to a domain with a locally quasiconformal
boundary whose closure is a compact in Rn, and, besides that, every prime end in D is regular.
Note that space DP = D ∪ ED is metric, which can be demonstrated as follows. If g : D0 → D
is a quasiconformal mapping of a domain D0 with a locally quasiconformal boundary onto some
domain D, then for x, y ∈ DP we put:

ρ(x, y) := |g−1(x)− g−1(y)| , (3)

where the element g−1(x), x ∈ ED, is to be understood as some (single) boundary point of the
domain D0. The specified boundary point is unique, see e.g. [1, Theorem 4.1]. It is easy to verify
that ρ in (3) is a metric on DP .

Let E ⊂ D. We say that D is finitely connected at the point z0 ∈ E, if for each neighborhood
Ũ of z0 there is a neighborhood Ṽ ⊂ Ũ of z0 such that (D ∩ Ṽ ) \ E consists of finite number of
components. We say that D is finitely connected on E, if D is finitely connected at every point
z0 ∈ E. The following theorem is true.
Theorem 1. Let D and D ′ be domains in Rn, n ⩾ 2, and let D be a domain with a weakly flat
boundary. Suppose that f is open discrete mapping of D onto D ′ satisfying the relation (1) at each
point y0 ∈ D ′. In addition, assume that the following conditions are fulfilled:
1) for each point y0 ∈ ∂D ′ there is 0 < r0 := sup

y∈D ′
|y − y0| such that for any 0 < r1 < r2 <

r0 := sup
y∈D ′
|y − y0| there exists a set E ⊂ [r1, r2] of positive linear Lebesgue measure such that Q is

integrable on S(y0, r) for r ∈ E;
2) D ′ is a regular domain and, in addition, D ′ is finitely connected on C(f, ∂D) ∩D ′, i.e., for

each point z0 ∈ C(f, ∂D)∩D ′ and for any neighborhood U of this point there exists a neighborhood
V ⊂ U of this point such that the set V \ C(f, ∂D) consists of a finite number of components;
3) the set f −1(C(f, ∂D) ∩D ′) is nowhere dense in D;
4) the set D ′ is finitely connected in ED ′ := D ′

P \D ′, i.e., for any P0 ∈ ED ′ and any neighborhood
U of P0 in D ′

P there is a neighborhood V ⊂ U such that V \C(f, ∂D) consists of finite number of
components.
Then the mapping f has a continuous extension f : D → D ′

P by the metric ρ defined in (3).
Moreover, f(D) = D ′

P .
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Markov graphs provide an interesting tool in combinatorial dynamics, which helps to establish
Sharkovsky-type results for continuous vertex maps on topological trees [1].

From purely discrete point of view, the construction of Markov graphs stems from a given vertex
self-map on a combinatorial tree. Namely, let X be a tree and σ : V (X) → V (X) be a map. The
corresponding Markov graph is a directed graph having the edge set E(X) as its vertex set, with
the arc set {(uv, xy) : x, y ∈ [σ(u), σ(v)]X} (here [a, b]G = {x ∈ V (G) : dG(a, x)+dG(x, b) = dG(a, b)}
denotes the metric interval between a, b in a connected graph G).

In other words, the vertices of Γ(X, σ) are the edges of X with the existence of an arc uv → xy
if only if uv “covers” xy under the map σ.

Here we are interested in maps on trees with acyclic Markov graphs. Note that tree maps with
irreflexive Markov graphs are called anti-expansive. It can be proved that each anti-expansive map
has a unique fixed point [2]. In case of acyclic Markov graphs, we can say much more.
Theorem 1. Let X be a tree and σ : V (X)→ V (X) be its vertex self-map. Then Γ(X, σ) is acyclic
if and only if there exists a “filtration” of subtrees X = X0 ⊃ X1 ⊃ · · · ⊃ Xm such that

(1) V (Xm) = {u0} is a singleton with u0 being a fixed point for f ;
(2) σ(V (Xk)) ⊆ V (Xk+1) for 0 ≤ k ≤ m− 1.
A map σ : V → V is called nilpotent if there is k ≥ 1 such that σk is constant. The next result

completely describes the dynamical structure of maps on trees with acyclic Markov graphs.
Proposition 2. A map σ : V → V is nilpotent if and only if there is a tree X on V such that
Γ(X, σ) is acyclic.

In [3], the characterization of trees X which admit maps σ with Γ(X, σ) being a path was
obtained (these are the so-called balanced spiders).

A digraph is called an M-graph provided it is isomorphic to some Markov graph for a map on
a tree. It can be proved that in-trees, out-trees, orientations of paths and stars are all M-graphs.
However, not every polytree is an M-graph. To see this, consider the spider T obtained by gluing
three copies of P3 by their leaf vertices. Let D denotes the bipartite orientation of T in which the
center of X becomes a source. Then it can be showed that D is not an M-graph.
Conjecture: Any polytree with out-degrees bounded by 2 is an M-graph.
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Let H(R+×Rn) be a class of entire functions on R, KL is a class of quasipolynomials of the form
ϕ(x) =

∑n
i=1Qr(x) exp [αrx], where αr ∈ L ⊆ C, αk 6= αl, for k 6= l, Qr(x) are given polynomials.

In the strip Ω = {(t, x) ∈ Rn+1 : t ∈ {(0, T ), x ∈ Rn}, we consider of the system of equations

∂nUi
∂tn

+
n∑

j=1

aij

(
∂

∂x

)
∂n−jUi
∂tn−j

= 0, (1)

T∫

0

tn−jUi(t, x)dt = ϕik(x), k = {1, ..., n}, t ∈ [0, T ], x ∈ Rn. (2)

Where aij
(
∂
∂x

)
, are differential expression with entire symbols aij(λ) 6= 0. Denote be P seet zeros

of function η(λ) =
∫ T
0
W n−1(t, λ)dt.

Theorem 1. Theorem. Let ϕik(x) ∈ KL, i = {1, ..., n}, j = {1, ..., n} then the class KL\P exist
and unique solution of the problem (1)-(2), can be represented in the form

Ui(t, x) =
n−1∑

k=0

n∑

p=1

ϕkp

(
∂

∂x

){
1

η(λ)
Tkjp(t, λ)W (t, λ) exp[λx]

}
λ=0

,

Solution of the problem (1)-(2) according to the differential-symbol method [1,2],
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Homotopy properties of Morse functions on non-orientable
surfaces

Iryna Kuznietsova
(Institute of Mathematics, NAS of Ukraine, Tereshchenkivska str. 3, Kyiv, 01024 Ukraine)

E-mail: kuznietsova@imath.kiev.ua
Sergiy Maksymenko

(Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine)
E-mail: maks@imath.kiev.ua

Let M be a smooth compact surface and P is a real line R or a circle S1. Denote by F(M,P )
the space of smooth functions f ∈ C∞(M,P ) satisfying the following conditions:
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1) the function f takes constant value at ∂M and has no critical point in ∂M ;
2) for every critical point z of f there is a local presentation fz : R2 → R of f near z such that

fz is a homogeneous polynomial R2 → R without multiple factors.
Let X be a closed subset of M . Denote by D(M,X) the group of C∞-diffeomorphisms of M fixed
on X, that acts on the space of smooth functions C∞(M,P ) by the rule: (f, h) 7−→ f ◦ h, where
h ∈ D(M,X), f ∈ C∞(M,P ).

Let O(f,X) = {f ◦ h |h ∈ D(M,X) be orbit of f with respect to the action above.
Precise algebraic structure of such orbits for oriented surfaces was described in [1]. In particular,

the following theorem holds.
Theorem 1. [1] Let M be a connected compact oriented surface except 2-sphere and 2-torus and
let f ∈ F(M,P ). Then π1O(f, ∂M) ∈ G, where G is a minimal class of groups satisfying the
following conditions:

1) 1 ∈ G;
2) if A,B ∈ G, then A× B ∈ G;
3 if A ∈ G and n ≥ 1, then A on Z ∈ G.

Definition 2. Let G, H be groups, m ∈ Z and γ : H → H be automorphism of order 2. Define
the automorphism φ : G2m ×Hm → G2m ×Hm by the formula

φ(g0, . . . , g2m−1, h0, . . . , hm−1) = (g2m−1, g0, . . . , g2m−2, h1, h2, . . . , hm−1, γ(h0)).

This automorphism φ generates homomorphism φ′ : Z→ G2m×Hm. The corresponding semidirect
product G2m ×Hm oϕ′ Z will be denoted (G,H) oγ,m Z.
Theorem 3. [2] Let M be a Möbius band. Then for every f ∈ F(M,P ) either

(1) exist groups A,G,H ∈ G, an authmorphism γ : H → H of order 2 and m ≥ 1, such that

π1O(f, ∂M) ∼= A× (G,H) oγ,m Z,

(2) or there exist groups A,G ∈ G and odd number m ≥ 1 such that

π1O(f, ∂M) ∼= A×G ob Z.

Conversely, for every such tuple (A,G,m) or (A,G,H, γ,m) there exists f ∈ F(M,P ) such that
we have the corresponding isomorphism.

It was shown in [1] that if M has negative Euler characterictic, then fundamental groups of
orbits of functions in F(M,P ) are direct products of such groups for functions only on cylinders,
disks and Möbius bands.
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The solution to a problem in linear chain recurrence
Antoni Lopez-Martinez

(Universitat Politecnica de Valencia, Cami de Vera, s/n, 46022 Valencia, Spain)
E-mail: anlomar97@gmail.com

We exhibit the existence of continuous (and even invertible) linear operators acting on Banach
(and even Hilbert) spaces whose restriction to their respective closed linear subspaces of chain
recurrent vectors are not chain recurrent operators. This example completely solves in the negative
a problem posed in [1] by N. C. Bernardes Jr. and A. Peris on chain recurrence in Linear Dynamics.
The results exhibited along this talk can be found in [2], which is a joint work with Dimitris
Papathanasiou.
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On some dynamical systems given in terms of a chain
A2-representation

Makarchuk Oleg
(Institute of Mathematics, NAS of Ukraine, 01024 Ukraine, Kiev-4,3, Tereschenkivska st.)

E-mail: makolpet@gmail.com

Let 0 < α1 < α2, α1α2 =
1
2
and

[a0; a1, a2, . . . , ak, . . . ] = a0 +
1

a1 + · · ·+
1

ak−1 +
1

ak + . . .

— continued fraction, where a0 ∈ Z+, aj > 0 for all j ∈ N . It is well known from [1] that for any
t ∈ [α1;α2], there exists a sequence (bn) with bn ∈ {α1;α2} for all n ∈ N, such that

t = [0; b1, b2, . . . ; bn, . . . ].

This expression is called the A2-representation with the alphabet {α1;α2}. A countable subset
of [α1;α2] has two distinct A2-representations of the form

[0; b1, . . . ; bn, α1, (α1;α2)] = [0; b1, . . . , bn, α2, (α2;α1)],

where parentheses denote the period of a given continued fraction. Numbers possessing the above
property are called A2-binary. In contrast, numbers in the interval [α1;α2] that are not A2-binary
and have a unique A2-representation are termed A2-unary. A detailed analysis of the topological
and metric properties of the A2-representation is provided in [1].

Consider left shift operator
T ([0; a1, a2, ..., an, ...]) = [0; a2, a3, ..., an+1, ...].

From now on, we agree not to use A2-representations with period (α1;α2) for A2-binary numbers.
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Let (ξn) be a sequence of independent discretely distributed random variables that take values
α1 or α2 with probabilities ρ ∈ (0; 1) and 1 − ρ, respectively. Let η(·) be the Lebesgue-Stieltjes
measure corresponding to the distribution

ξ = [0; ξ1, ξ2, . . . , ξn, . . . ].

The Lebesgue structure of the distribution of the random variable ξ was studied in [2]. The new
result is the following.
Theorem 1. The following statements are true:
1. The dynamical system ([α1;α2];B(R) ∩ [α1;α2];T ; η(·)) is ergodic and the transformation T

is strongly mixing:

lim
n→+∞

η(T−n(A) ∩ B) = η(A)η(B) ∀A,B ∈ B(R) ∩ [α1;α2];

2. The entropy of ([α1;α2];B(R) ∩ [α1;α2];T ; η(·)) is equal to

h(T ) = 2 ln
(
ρα1 + (1− ρ)α2 +

√
(ρα1 + (1− ρ)α2)2 + 4

2

)
.
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Classification of smooth structures on non-Hausdorff
one-dimensional manifolds
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Previously [1] the authors gave a classification of Cr-differentiable structures, r > 0, on the
non-Hausdorff line L with two origins. The aim of the present talk is to give a classification of
differentiable structures the non-Hausdorff one-dimensional manifold Y called non-Hausdorff letter
Y.

It turns out that in contrast with the real line those manifolds have infinitely many pair-wise
non-diffeomorphic structures.

Moreover, the arguments of both proofs are similar and can be given only in terms of certain
commutative diagrams. In particular, this allows to extends arguments to the following general
problem. Given a pair of integers 0 < s < r ≤ ∞, it is possible to classify Cr structures of L (or
Y ) up to a Cs-diffeomorphism.
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Equivalence groupoids and group classification of
(1+3)-dimensional nonlinear Schrödinger equations
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The study of Lie symmetries of nonlinear Schrödinger equations was started in the late 1970es
and was then continued by many scientists, see [1, 2, 3] and references therein. An important
class V of (1 + n)-dimensional nonlinear Schrödinger equations with modular nonlinearities and
complex-valued potentials was comprehensively considered within the framework of Lie symmetries
in the literature, but the main results in this direction were obtained initially in [3] and then in [1].
The above equations are the form

iψt + ψaa + f(ρ)ψ + V (t, x)ψ = 0, (1)
where t and x = (x1, . . . , xn) are the real independent variables, n ∈ N, ψ is the unknown complex-
valued function of (t, x), V is an arbitrary smooth complex-valued potential depending on (t, x),
and f is an arbitrary complex-valued nonlinearity depending only on ρ := |ψ|, fρ 6= 0. Subscripts
of functions denote differentiation with respect to the corresponding variables. The index a runs
from 1 to n, and summation over repeated indices is assumed. Particularly known equations from
the class V are cubic Schrödinger equations with potentials, where f(ρ) = ρ2. The complete group
classification of this class was carried out in [3] for n = 1 and in [1] for n = 2. Moreover, the
last reference also contains preliminary results on group analysis of the class V for the case of
arbitrary n. At the same time, even in the most physically relevant case n = 3, the problem of
complete group classification of the class V is still open. The class V is not normalized, but it can
be partitioned into three disjoint normalized subclasses, which are not related to each other by
point transformations. These are the subclasses with logarithmic, power and general nonlinearities.
We started extending the results of [1, 3] to the case n = 3 and were able to carry out the major
part of the group classification for n = 3 and general modular nonlinearities.

Denote by Vf the subclass of the class V with n = 3 and a fixed general value of the nonlinearity f ,
i.e., ρfρρ/fρ is not a real constant, by ψ∗ the complex conjugate of ψ,

D(1) := ∂t, J1 := x2∂3 − x3∂2, J2 := x3∂1 − x1∂3, J3 := x1∂2 − x2∂1,

P (χ) := χa∂a +
1

2
χatxaM, M := iψ∂ψ − iψ∗∂ψ∗ ,

where the parameters χa and σ are real-valued smooth functions of t.
Lemma 1. The class Vf is normalized. The maximal Lie invariance algebra gV of an equation LV
from this class consists of the vector fields of the form cD(1)− κaJa + P (χ) + σM , where c and κa
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are arbitrary real constants and the parameter functions χa and σ are arbitrary real-valued smooth
functions of t that satisfy the condition

cVt + (κ2x3 − κ3x2 + χ1)V1 + (κ3x1 − κ1x3 + χ2)V2 + (κ1x2 − κ2x1 + χ3)V3 =
1

2
χattxa + σt. (2)

The kernel Lie invariance algebra of equations from the class Vf is g∩Vf := 〈M〉.
Any vector field of the general form presented in Lemma 1, where at least one of the parameters

c, κa and χa takes a nonzero value, belongs to gV for a potential V satisfying the classifying
condition (2) for this vector field. This is why we have g〈 〉 :=

∑
V gV = 〈D(1), Ja, P (χ), σM 〉,

where the parameter functions χa and σ run through the set of real-valued smooth functions of t,
A subalgebra s of g〈 〉 is called appropriate if s = gV for some V . For each of such subalgebras, we

define five nonnegative integers that depend on V , are invariant under equivalence transformations
of the class Vf and label the cases of Lie-symmetry extensions within this class,

r1 := rank{χ | ∃ σ : P (χ) + σM ∈ s}, k0 := dim s ∩ 〈σM〉 = dim g∩ = 1,

k1 := dim s ∩ 〈P (χ), σM〉 − k0, k2 := dim s ∩ 〈J1, J2, J3, P (χ), σM〉 − k1 − k0,
k3 := dim s− k2 − k1 − k0.

One has r1 ∈ {0, 1, 2, 3}, k2 ∈ {0, 1, 3}, r1 ⩽ k1, k1 ∈ {0, . . . , 6} and k3 ∈ {0, 1} [1, Section 6].
The following lemmas are useful in the course of the group classification of the class Vf with

n = 3.
Lemma 2. (i) If k2 = 3 and Q0 = P (χ0) + σ0M + ζ0I ∈ s, then P (χ0aδb) + σ̆abM ∈ s for any
a, b ∈ {1, 2, 3} and some functions σ̆ab of t.
(ii) If k2 = 3, then s ⊇ 〈J1, J2, J3〉 modulo the point equivalence in the class Vf , and r1 ∈ {0, 3}.

Lemma 3. If χ and χ̆ are linearly independent and χ · χ̆t − χt · χ̆ = 0, then rank(χ, χ̆) = 2.
Lemma 4. If rank(χ1,χ2) = rank(χ1,χ2,χ) = 2 and χ·χl−χt ·χl = 0, l = 1, 2, then χ ∈ 〈χ1,χ2〉.
Lemma 5. Let r1 = 2, i.e., the algebra gV contains at least two vector fields of the form Qs =
P (χs) + σsM + ζsI, s = 1, 2, where rank(χ1,χ2) = 2 for any t in the related interval. Denote
χ0 := χ1 × χ2 6= 0. Then χ1 · χ2

t − χ1
t · χ2 = const and the following holds:

(i) k1 ∈ {2, 3, 4}.
(ii) k1 = 2 if and only if

(
χ0 × χ0

t , χ
0
tt + χ1

t × χ2
t

)
6= 0.

(iii) k1 = 3 if and only if
(
χ0 × χ0

t , χ
0
tt + χ1

t × χ2
t

)
= 0 but χ0 × χ0

t 6= 0.
(iv) k1 = 4 if and only if χ0 × χ0

t = 0.
We have classified the equations from the class Vf with r1 ∈ {0, 1, 3} and are almost complete

classification for the case r1 = 2. In particular, if r1 = 3, k2 = 0, k3 = 1, then up to the point
equivalence within the class Vf , the algebra gV necessary contains the vector field D(1)+κJ3 with
κ = const. For nonzero κ, the corresponding case of Lie symmetry extension is the following:

V = 1
4
(α1ω

2
1 + α2ω

2
2 + α3x

2
3) +

1
2
(β1ω1 + β2ω2)x3 + iν :

gV = 〈M, P (θp1 cosκt− θp2 sinκt, θp1 sinκt+ θp2 cosκt, θp3), p = 1, . . . , 6, D(1) + κJ3〉,
where ω1 := x1 cosκt+ x2 sinκt, ω2 := −x1 sinκt+ x2 cosκt, ω3 := x3; α1, α2, β1, β2 and κ are real
constants with α2 6= α1 6= 0, and κ 6= 0; (θp1(t), θp2(t), θp3(t)) are linearly independent solutions of
the system,

θ1tt − 2κθ2t = (κ2 + α1)θ
1 + β1θ

3, θ2tt + 2κθ1t = (κ2 + α2)θ
2 + β2θ

3, θ3tt = α3θ
3.
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Symplectic representation of surface mapping classes of
algebraically finite type

Łukasz P. Michalak
(Adam Mickiewicz University, Poznań, Poland)

E-mail: lukasz.michalak@amu.edu.pl

In [4] Nielsen investigated properties of surface mapping classes of algebraically finite type,
defined to be represented by homeomorphisms that are either periodic or reducible and periodic
outside an invariant system of circles. In other words, they have no pseudo-Anosov pieces in their
Nielsen–Thurston decomposition. The name ”algebraically finite type” was motivated by Nielsen’s
conjecture that such classes can be defined purely algebraically as the ones that induce a map
on the first homology group whose spectrum consists only of roots of unity (the latter classes are
called quasi-unipotent). These two definitions do not coincide because of Thurston’s construction
of pseudo-Anosov map inducing the identity transformation. However, the following question is
still open: which symplectic transformations can be obtained from mapping classes of algebraically
finite type? In particular, what is the maximum finite order of such symplectic matrices? We will
discuss this problem, important also from the point of view of dynamics. Da Rocha [1] showed
that the classes containing Morse–Smale diffeomorphism and classes of algebraically finite type are
the same. Some constructions in terms of Lefschetz numbers we provided in [2, 3].

The talk is based on the joint project with G. Graff and W. Marzantowicz.
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The Arithmetic and Geometric Properties of Rational
Surfaces
Jia-Li Mo
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Rational surfaces are an important research subject in surface theory. The surfaces with minimal
degree and Del Pezzo surfaces are classical examples of rational surfaces. In this talk, we will focus
on recent advances in the study of rational surfaces. In particular, we will investigate the structure
of rational surfaces from both arithmetic and geometric perspectives.

Theory of Galois covers is the geometric counterpart of classical Galois theory. In [1], we proved
that the Galois covers of surfaces with minimal degree are simply connected surfaces. Furthermore,
we also considered extending these results to Zappatic surfaces. We proved that:
Theorem 1. If a smooth projective algebraic surface deforms to a Zappatic surface of type En,
n ≥ 4, then its Galois cover is simply connected and of general type.

Furthermore, we have the following result:
Theorem 2. For a complex algebraic surface X ⊂ P2, if there exists a degeneration X0 such that
X0 has only singularities of type Rk, and X0 has Rk loops, then the Galois cover of the surface X
is not simply connected.

The topological invariants of a surface are important invariants in surface theory. In this talk,
we will also introduce the invariants of Galois covers, with a particular focus on Zappatic surfaces
that have only singularities of type Rk:
Theorem 3. The signature τ(XGal) =

1
3
n! (−I(T )) where n is the degree of X, and I(T ) is the

number of vertices of degree 2 in the dual graph T of X0.
We also extend this result to surface fibrations over rational surfaces, thereby obtaining some

geometric properties of rational surfaces:
First, for elliptic fibrations, we have ([2]):

Theorem 4. Given an rational elliptic surface S over P1, with the generic fibre F , we give the
number of integral sections.

Secondly, for fibrations with two singular fibers, we have ([3]).
Theorem 5. Let f : S −→ P1 be a relatively minimal fibration of genus g ≥ 2 with two singular
fibers, F1 and F2.

• If 0 6= τ(S), then τ(S) ≤ −4.
• If τ(S) < −4, then τ(S) ≤ −6.

Finally, we will present some applications of the theorems discussed and propose several open
problems.
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Surfaces with flat normal connection in 4-dimensional
space forms

Naoya Ando
(Faculty of Advanced Science and Technology, Kumamoto University, 2–39–1 Kurokami,

Chuo-ku, Kumamoto 860–8555 Japan)
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Let N be a 4-dimensional Riemannian space form with constant sectional curvature L0. Let
h be the metric of N and ∇ the Levi-Civita connection of h. Let M be a Riemann surface and
F : M −→ N a conformal immersion. Let (u, v) be local isothermal coordinates of M . Then
the induced metric of M by F is represented as g = e2λ(du2 + dv2) for a function λ. We set
T1 := dF (∂/∂u), T2 := dF (∂/∂v). Let N1, N2 be normal vector fields of F satisfying h(N1, N1) =
h(N2, N2) = e2λ, h(N1, N2) = 0.

Suppose that N is oriented and that (T1, T2, N1, N2) gives the orientation. We set

e1 :=
1

eλ
T1, e2 :=

1

eλ
T2, e3 :=

1

eλ
N1, e4 :=

1

eλ
N2

and

Ω±,1 :=
1√
2
(e1 ∧ e2 ± e3 ∧ e4), Ω±,2 :=

1√
2
(e1 ∧ e3 ± e4 ∧ e2),

Ω±,3 :=
1√
2
(e1 ∧ e4 ± e2 ∧ e3).

The two-fold exterior power
∧2F ∗TN of the pull-back bundle F ∗TN on M by F is of rank 6 and

decomposed into two subbundles
∧2

±F
∗TN of rank 3, and Ω±,1, Ω±,2, Ω±,3 form local orthonormal

frame fields of
∧2

±F
∗TN respectively.

Let ∇̂ be the connection of
∧2F ∗TN induced by ∇. Then ∇̂ gives connections of

∧2
±F

∗TN and
we obtain

∇̂T1(Ω±,1 Ω±,2 Ω±,3) = (Ω±,1 Ω±,2 Ω±,3)




0 −W± −Y∓
W± 0 ±ψ±
Y∓ ∓ψ± 0


 ,

∇̂T2(Ω±,1 Ω±,2 Ω±,3) = (Ω±,1 Ω±,2 Ω±,3)




0 ∓Z± ±X∓
±Z± 0 ∓φ∓
∓X∓ ±φ∓ 0




(1)

([4]), where
(i) W±, X±, Y±, Z± are functions related to the second fundamental form σ of F satisfying

W+ +W− = X+ +X−, Y+ + Y− = Z+ + Z−,
(ii) φ± := λu ∓ µ2, ψ± := λv ∓ µ1, and µ1, µ2 are functions related to the normal connection
∇⊥ of the immersion F (in particular, if ∇⊥ is flat, then there exists a function γ satisfying
γu = µ1, γv = µ2).
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Let R̂ be the curvature tensor of ∇̂. Then computing R̂(T1, T2)(Ω±,1 Ω±,2 Ω±,3) by (1) and
noticing that N is a space form of constant sectional curvature L0, we obtain

W∓X± + Y±Z∓ = L0e
2λ + (φ±)u + (ψ∓)v (2)

and
(Y±)v ∓ (X±)u = ±W∓φ± − Z∓ψ∓,

(W∓)v ± (Z∓)u = ∓Y±φ± −X±ψ∓.
(3)

As in [5], (2) is equivalent to the system of the equations of Gauss and Ricci, and (3) is equivalent
to the system of the equations of Codazzi.

In [5], immersions with flat normal connection are studied. Let R⊥ be the curvature of the
normal connection ∇⊥. By definition, R⊥ = 0 just means that ∇⊥ is flat. If F has a parallel
normal vector field, then the second fundamental form σ satisfies the linearly dependent condition
and then ∇⊥ is flat (see [5]). Suppose that the curvature K of g is nowhere equal to L0. Then F
has a parallel normal vector field if and only if σ satisfies the linearly dependent condition ([5]).
On the other hand, if we suppose K = L0, then the linearly dependent condition of σ does not
necessarily mean the existence of parallel normal vector fields ([5]).

By (2), F satisfies W∓X± + Y±Z∓ = 0 if and only if R⊥ = 0 and K = L0 hold. Suppose that
there exist functions k± satisfying

(W∓, Z∓) = k±(−Y±, X±). (4)

Then W∓X± + Y±Z∓ = 0 hold. Applying (4) to (3), we see that there exist functions f± satisfying

X± = ± (f±)v√
1 + k2±

, Y± =
(f±)u√
1 + k2±

, (5)

and by the equation of Ricci, we obtain (f+)
2
u + (f+)

2
v = (f−)2u + (f−)2v. Therefore, if we suppose

(f+)
2
u + (f+)

2
v 6= 0, then there exists a function ψ satisfying

[
(f−)u
(f−)v

]
=

[
cosψ − sinψ
sinψ cosψ

] [
(f+)v
(f+)u

]
. (6)

Suppose that k± is nowhere zero and that X±, Y± satisfy X2
+Y

2
− − X2

−Y
2
+ 6= 0. Then the second

fundamental form σ does not satisfy the linearly dependent condition ([5]), and using (3), (4) and
(5), we can obtain an over-determined system for the function γ related to ∇⊥ ([5]). In addition,
if we suppose L0 = 0, then the compatibility condition of this over-determined system can be
represented as an over-determined system of polynomial type with degree two for the function ψ
in (6) ([5]). See [1] for over-determined systems of polynomial type.

In the above discussions, we supposed that N is a Riemannian space form. Suppose that N is
a 4-dimensional neutral space form with constant sectional curvature L0. Then for a Riemann or
Lorentz surface M and a space-like or time-like, and conformal immersion F : M −→ N , we can
have similar discussions and obtain analogous results ([4], [5]). See [2], [3] for time-like surfaces
in N with zero mean curvature vector and K ≡ L0 (such surfaces have flat normal connection).
In the case where N is a 4-dimensional Lorentzian space form with constant sectional curvature
L0, noticing that the complex bundle

∧2F ∗TN ⊗C is decomposed into two subbundles of complex
rank 3, we can have similar discussions and obtain analogous results ([4], [5]).

This talk is supported by JSPS KAKENHI Grant Number JP21K03228.
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In this talk we survey and compare several methods of representation of Lie algebras by vec-
tor fields, namely we consider the direct method [2], the Shirokov’s method [3], the Blattner’s
method [1] and standard weight representations [4]. We consider Lie algebras defined by their
structure constants tensor in some fixed basis and study the problem of construction of all their
realizations.
Definition 1. A realization of a Lie algebra g in vector fields on a domain M ⊂ Cm (or M ⊂ Rm)
is a homomorphism R : g→ Vect(M).

The interest to this subject is motivated by a number of applications, in particular in classification
and integration of differential equations, see [2] for more applications.

We present several illustrative examples, contrary instances and some new results concerning
realizations of special linear Lie algebra.
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Let T : X 7→ X be a bounded linear operator acting on topological space X
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Definition 1. The operator T is Li-Yorke chaotic if there is uncountable set U ⊂ X, called
scrambled set, such that for each x, y ∈ U, x 6= y, lim

n 7→∞
‖T n(x)− T n(y)‖ = 0

Let (Hn)
∞
n=0 be a sequence of Hilbert spaces. Each space Hn is supposed to be nontrivial and

possibly nonseparable.
Assume that for all n and m, the spaces Hn and Hm are isomorphic. We define `2(Hn) =

`2((Hn)
∞
n=0) as the Hilbert space consisting of elements x = (x0, x1, . . . , xn, . . .), xk ∈ Hk endowed

with norm ‖x‖ = (
∑∞

i=0 ‖xi‖2)
1
2 .

Let (ωn) be a sequence of weights and let us fix a sequence of isomorphisms Jm : Hm → Hm−1,
‖Jm‖ = 1, m ∈ N

0←− H0
J1←− H1

J2←− · · · Jn←− Hn · · · .
An operator

T : `2(Hn)→ `2(Hn)

will be called a backward weighted shift (with respect to the family (Jm)) with weight sequence (ωn)
if it is of the form

T (x) = (ω1J1(x1), ω2J2(x2), . . . , ωmJm(xm), . . .).

Theorem 2. Let (Hn)
∞
n=0 be a sequence of Hilbert spaces. A backward weighted shift T : `2(Hn)→

`2(Hn), T (x) = (ω1J1(x1), ω2J2(x2), . . . , ωmJm(xm), . . .) is Li-Yorke chaotic
This research was supported by the National Research Foundation of Ukraine, 2023.03/0198

“Analysis of the spectra of countably generated algebras of symmetric polynomials and possible
applications in quantum mechanics and computer science”.
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Wilson loops as a device for studying phase transitions
and conductivity effects

Tetiana Obikhod
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Wilson loops have become a fundamental tool in high-energy physics. They have allowed the
formulation and verification of key properties of quantum chromodynamics and laid the foundation
for the numerical analysis of strong interactions. Their applications extend beyond QCD to broad
areas of theoretical physics, including string theory and quantum gravity [1].

The importance of Wilson loops can be summarized in the following list:
• Proof of confinement – Wilson loops allowed us to quantitatively explain why quarks are not

observed in a free state;
• Development of lattice QCD – this approach made it possible to simulate strong interactions

on computer;
• Application in string theory – Wilson loops are associated with the so-called ”string break”

effects and the formation of ”color tubes” between quarks;
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• Generalizations to other theories used in various gauge theories, including gravity and con-
densed matter.

There are two most important aspects of the application of Wilson loops that need to be ad-
dressed:
1. The topological aspect:
In systems with topological order, the conductivity can be related to topological invariants that
are expressed in terms of Wilson loops. For example, in the quantum Hall effect, the conductivity
is quantized, which can be described using nontrivial topological configurations of Wilson loops.
2. Lattice QCD:
In lattice QCD calculations, Wilson loops are used to study the potentials between quarks and the
properties of quark-gluon plasma. The plasma conductivity depends on the mobility of quarks and
gluons, whose interactions are encoded in the Wilson loops.

For a quantized magnetic field, Φ = 2πn/e the Wilson loop takes the value

W (c) = ei2πn.

For a magnetic monopole with a magnetic charge g at the center of the field of radius R the Wilson
loop takes the value

W (C) = e2πg/R.

Quantization of magnetic flux leads to discrete values of the Wilson loop, and quantization o
magnetic charge indicates the topological nature of the monopole.

A powerful tool that combines physics and mathematics, Chern-Simons theory allows us to
study the topological properties of systems and their stability [2]. Chern-Simons theory describes
topological invariants that do not depend on the metric of the space, but only on its topological
structure. The basis of the theory is the Chern-Simons action, which is defined in three-dimensional
space and depends on the gauge field. It has the form:

S =
k

4π

∫
tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)

average value of Wilson loop

< WR(C) >=
1

Z

∫
DAWR(C)e

iS(A),

where Z =
∫
DAeiS(A) is a statistical sum.

Chern-Simons theory plays a key role in describing topological phases of matter, such as the
fractional quantum Hall effect (FQHE) [3]. The Laughlin states are the most well-known examples
of fractional quantum Hall states, occurring at filling factors ν = 1/m, where m is an odd integer
(e.g., ν = 1/3, 1/5, . . .). In deriving the topological response of the Laughlin state, particularly the
quantized Hall conductivity let’s obtain the effective action for the external electromagnetic field
Aµ connected with the Lagrangian

L =
m

4π
εµνρaµ∂νaρ +

e

2π
εµνρAµ∂νaρ.

To derive the Hall conductivity from the effective action, we start with the effective Chern-Simons
action for the external electromagnetic field Aµ:

Leff =
e2

4πm
εµνρAµ∂νAρ.
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This action describes the topological response of the system to the external field Aµ. The coefficient
e2

4πm
encodes the filling factor ν = 1/m of the Laughlin state. Using Hall conductivity expression

σxy =
jx

Ey
and substituting jµ =

δLeff

δAµ
, we get

σ =
e2

4πm
=
e2

h
ν.

This derivation shows how the topological Chern-Simons term in the effective action leads to the
quantized Hall conductivity, a hallmark of the Laughlin state.

To find the phase factor for exchanging two quasiparticles in the Laughlin state, we need to
analyze the braiding statistics of quasiparticles using the framework of Chern-Simons theory and
Wilson loops. Consider two quasiparticles at positions r1 and r2. When the quasiparticles are
exchanged, their trajectories form a braid in spacetime. The phase factor associated with this
exchange can be computed using the linking number of the Wilson loops < W (C1)W (C2) >=

ei
2π
m Link(C1, C2). For a simple exchange of two quasiparticles, the linking number is Link(C1, C2) =

1 and
< W (C1)W (C2) >= ei

2π
m .

Exchanging two quasiparticles corresponds to half of a full braid and we have
ei

π
m .

The phase factor signals about:
1. The Chern-Simons term in the effective action enforces the fractional braiding phase.
2. The exchange of two quasiparticles corresponds to a π rotation in spacetime, leading to the
phase factor eiπ/m.
3. The linking number of Wilson loops describing quasiparticle trajectories.
From the results of comparing the expressions for the Wilson loop and conductivity, we see pro-
portionality of the average value of Wilson loop to the filling factor ν = 1/m. The movement of
one quasiparticle around another produces a topological phase shift associated with the charge and
statistics of the particles.
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Translation length formula for two-generated groups
acting on trees
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The notion of a tree is considered at various levels of generality in graph theory, geometry, and
topology. A combinatorial tree (i.e., a connected circuit-free graph) determines an integer-valued
metric on its set of vertices; the resulting metric space is called a Z-tree. A metric space that is
geodesic and uniquely arcwise-connected is called an R-tree. These examples can be generalized
by defining the notion of a Λ-tree [1, Ch. 2, §1], where Λ is any totally ordered Abelian group. A
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Λ-tree (X, d) is a Λ-metric space (i.e., its metric takes values in Λ instead of R) satisfying certain
natural conditions reflecting the tree-like structure of X.

All isometries of a Λ-tree (X, d) onto itself can be divided into three types: elliptic, hyperbolic,
and inversions [1, Ch. 3, §1]. Let g be an isometry of a Λ-tree (X, d). It is called elliptic if it has
a fixed point in X; g is called an inversion if g has no fixed points in X but g2 does; otherwise g
is called hyperbolic. The translation length of g [5, p. 297] is defined as

‖g‖ :=
{
0 if g is an inversion,
min{d(x, gx) : x ∈ X} otherwise. (1)

In fact, if g is not an inversion, the set of points for which the minimum in (1) is reached is a
nonempty closed subtree of X. Hyperbolic isometries are precisely those with ‖g‖ > 0. If g is
hyperbolic, then the set {x ∈ X : d(x, gx) = ‖g‖} is called the axis of g; it is isometric to a convex
subset of Λ and the action of g on its axis corresponds to the translation by ‖g‖, which justifies
the terminology.

Parry [5] proved that a function ‖·‖ : G→ Λ+ is the translation length function for some action
of a group G on a Λ-tree if and only if it satisfies a certain set of algebraic conditions; such a
function is called a pseudo-length on G.

Our main result concerns an explicit formula for ‖g‖, g ∈ 〈a, b〉, in the case of a pair (a, b) ∈ G×G
satisfying the conditions

‖a‖ > 0, ‖b‖ > 0, |‖a‖ − ‖b‖| < min{‖ab‖, ‖ab−1‖}. (2)
We call such a pair (a, b) ∈ G×G a ping-pong pair.
Theorem 1. If ‖·‖ is a pseudo-length on a group G and a, b ∈ G satisfy (2), then

2‖w‖ =
(
n−1∑

i=1

‖xixi+1‖
)

+ ‖xnx1‖ > 0,

for any cyclically reduced word w = x1 . . . xn, xi ∈ {a, b, a−1, b−1}, n ≥ 1.
An important consequence of Theorem 1 is the fact that if G acts by isometries on a Λ-tree

(X, d) with the translation length function ‖·‖, and (a, b) ∈ G×G is a ping-pong pair with respect
to ‖·‖, then the subgroup 〈a, b〉 ≤ G is free of rank two and acts freely, without inversions, and
properly discontinuously on (X, d). This result is known, see [2, Propositions 1 and 2]. The cited
proofs are geometric in nature and rely on drawing pictures or “ping-pong” type arguments. We
present a combinatorial approach, using only the defining conditions of a pseudo-length and not
referring to any geometric interpretation.

Our other result is the existence and uniqueness of a pseudo-length ‖ · ‖ : F (a, b) → Λ+ on the
free group F (a, b) under certain conditions imposed on the values it takes at a, b, ab, and ab−1.
Theorem 2. Let α, β, γ, δ ∈ Λ be such that

γ − α− β ∈ 2Λ, δ − α− β ∈ 2Λ;
either γ = δ > α + β or max{γ, δ} = α + β;

α > 0, β > 0, |α− β| < min{γ, δ}.
(3)

There exists exactly one pseudo-length ‖·‖ : F (a, b) → Λ+ such that ‖a‖ = α, ‖b‖ = β, ‖ab‖ = γ,
and ‖ab−1‖ = δ.

Finally, we use Theorem 2 to prove that, in the case of a subgroup Λ ≤ R, any purely hyperbolic
(i.e., ‖g‖ > 0 for g 6= 1) pseudo-length on F (a, b) can be described by four elements of Λ satisfying
(3), and an outer automorphism of F (a, b). We present an algorithm to effectively find such a
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description of a given purely hyperbolic pseudo-length on F (a, b). The space of all these pseudo-
lengths is related to the concept of the Culler–Vogtmann outer space [3].
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We consider all possible topological structures of typical one–parameter bifurcations of gradient
flows on the 2-sphere with holes when number of singular points is at most six. Such flows were
completely researched in [2, 3, 4].

Complete topological invariants can be established for the topological equivalence of flows. Usu-
ally it is a graph which is augmented with additional information. The purpose of the considered
article is to construct a complete invariant for Morse flows and gradient codimension one gradient
flows on the 2-sphere with holes which resembles a chord diagram for Morse flows, researched in [1].
This invariant has a marked point in the diagram which allows us to define clearly a number code
of the flow. The invariants we have constructed (the distinguishing graph and the flow code) are
generalizations of the distinguishing graph of Peixoto and the Oshemkov–Sharko code which had
been developed for Morse flows on closed surfaces.

For example, we can consider gradient flows on 2-disk which have only one internal saddle
connection whereas all their singular points are hyperbolic.

All possible separatrix connections on a two-dimensional disk with no more than 6 singular points
are depicted in Fig. 0.1. The diagrams of reverse flows can be obtained from these by changing
all directions and colors of the separatrices (green and red swap places). With such a substitution,
diagrams 6 and 10 will revert to themselves (they define one flow each). The remaining diagrams
define two flows each.
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6 7 8 9 10
FiGURE 0.1. Saddle connections on D2

[4] A. Prishlyak and A. Prus, Three-color graph of the Morse flow on a compact surface with boundary, Journal of
Mathematical Sciences 249 (2020), no. 4, 661–672.
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In this work, we present a geometric approach to finding travelling wave solutions of the general-
ized Korteweg–de Vries (gKdV) equation [1]. The method is rooted in the theory of C∞-structures
and leverages concepts from differential geometry, particularly the theory of distributions and
Pfaffian systems (see [2]).

The gKdV equation, given by
ut + uxxx + a(u)ux = 0, (1)

where u = u(t, x) and a(u) is a smooth function, is an important equation in mathematics and
physics, with the standard Korteweg–de Vries equation being a well-known special case. The
function a(u) plays a crucial role in determining the specific characteristics of the gKdV equation
and its applicability to different physical scenarios, by establishing the nature and strength of the
nonlinearity in the system.

The core of this talk lies in the application of the C∞-structure-based method to integrate the
ordinary differential equation (ODE) obtained from the travelling wave ansatz applied to (1), i.e.,
the equation

−cy′ + y′′′ + a(y)y′ = 0, (2)
where y = y(z) and c ∈ R.

Roughly speaking, a C∞-structure for an mth-order ODE is an ordered collection of m vector
fields giving rise to a sequence of involutive distributions, starting with the distribution generated
by the vector field associated to the ODE. The key geometric insight is that the integral manifolds
of these distributions contain the prolongation of the solutions of the ODE. The method enables
the integration by transforming the problem into a sequence of m completely integrable Pfaffian
equations.
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To apply this geometric method to equation (2), we first construct a C∞-structure for this ODE,
starting with the Lie symmetry ∂z of the equation. The C∞-structure-based integration algorithm
is then applied, leading to a sequence of three Pfaffian equations. At the final step we obtain an
implicit general solution for the travelling wave solutions of the gKdV equation.

Finally, we present explicit solutions for the gKdV equation in various cases, depending on the
choice of the function a(u): the modified KdV equation, a family of KdV equations with power-law
nonlinearity, and the Schamel–Korteweg–de Vries equation.

This is a joint work with Concepción Muriel and Adrián Ruiz. This talk is supported by Plan
Propio de estímulo y apoyo a la Investigación y Transferencia 2025-2027, Universidad de Cádiz.
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ABSTRACT
Green’s relations are of fundamental importance in semigroup theory, as they classify the ele-

ments of a semigroup based on the principal ideals they generate. In this presentation, we charac-
terize all Green’s equivalence relations on the semigroup of states for the classical compact group
and cocommutative compact quantum group, and study the structure of all maximal subgroups
within this semigroup. We then extend our analysis to the setting of an arbitrary compact quantum
group, characterizing all invertible elements in the associated semigroup. Finally, we investigate
the semigroup S(GG/H) associated with a normal quantum subgroup H of a compact quantum
group G = (C(G),∆). This work is a collaboration with Prof. Issan Patri and Dr. Malay Mandal.
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We shall follow the terminology of [1]. By ω we denote the set of all non-negative integers.
The bicyclic monoid C (p, q) is the semigroup with the identity 1 generated by two elements p

and q subjected only to the condition pq = 1. Any element of C (p, q) has the unique representation
biaj, i, j ∈ ω. In [3] the following anti-isomorphic subsemigroups of the bicyclic monoid

C+(a, b) =
{
biaj ∈ C (a, b) : i ⩽ j, i, j ∈ ω

}

and
C−(a, b) =

{
biaj ∈ C (a, b) : i ⩾ j, i, j ∈ ω

}

are studied. All injective endomorphism of C+(a, b) are described in [2].
Let S be a semigroup with the non-empty set of idempotent E(S). An endomorphism α of S is

said to be E-endomorphism if (s)α ∈ E(S) for all s ∈ S.
Theorem 1. Let α be a monoid endomorphism of the semigroup C+(a, b). Then the following
conditions are equivalent:

(1) α is an E-endomorphism;
(2) there exists a non-idempotent element biaj of C+(a, b) such that (biaj)α is an idempotent of

C+(a, b);
(3) the image (C+(a, b))α is a finite subset of C+(a, b).

By ωmax we denote the set ω with the semilattice operation n ·m = max{n,m}, n,m ∈ ω. We
extend the semilattice operation of ωmax onto ω∗ = ω ∪ {∞} with ∞ /∈ ω in the following way

n · ∞ =∞ · n =∞ ·∞ =∞, for all n ∈ ω.
The set ω∗ with so defined semilattice operation we denote by ω∗

max.
An endomorphism ε of the semilattice ω∗

max is called bounded if there exists nε ∈ ω such that
(x)ε ⩽ nε for all x ∈ ω∗

max. It is obvious that the composition of any two bounded endomorphisms
of the semilattice ω∗

max is a bounded endomorphism. By Endb(ω
∗
max) we denote the semigroup

of all bounded endomorphisms of semilattice ω∗
max and by EndE(C+(a, b)) the semigroup of E-

endomorphisms of C+(a, b).
Theorem 2. The semigroups Endb(ω

∗
max) and EndE(C+(a, b)) are isomorphic.
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The problems of continuation of a partially defined metric and a partially defined ultrametric
were considered in [1] and [2], respectively. Using the language of graph theory we generalize the
criteria of existence of continuation obtained in these papers. For these purposes we use the concept
of a triangle function introduced by M. Bessenyei and Z. Páles in [3], which gives a generalization of
the triangle inequality in metric spaces. The obtained result allows us to get criteria of the existence
of continuation for a wide class of semimetrics including metrics, ultrametrics, semimetrics with
power triangle inequality, etc.

Let X be a nonempty set. Recall that a mapping d : X × X → R+, R+ = [0,∞), is a metric
if for all x, y, z ∈ X the following axioms hold: (i) (d(x, y) = 0) ⇔ (x = y), (ii) d(x, y) = d(y, x),
(iii) d(x, y) ⩽ d(x, z) + d(z, y). The pair (X, d) is called a metric space. If only axioms (i) and (ii)
hold then the pair (X, d) is called a semimetric space. We shall say that d is a pseudosemimetric
if only axiom (ii) and condition d(x, x) = 0 hold. In this case the pair (X, d) will be called a
pseudosemimetric space.
Definition 1. ([3]) Consider a pseudosemimetric space (X, d). We shall say that Φ: R+×R+ → R+

is a triangle function for d if Φ is symmetric and monotone increasing in both of its arguments,
satisfies Φ(0, 0) = 0 and, for all x, y, z ∈ X, the generalized triangle inequality

d(x, y) ⩽ Φ(d(x, z), d(y, z))

holds. We also shall say that d is a Φ-pseudosemimetric if Φ is a triangle function for d.
Let n ∈ N. For every triangle function Φ consider a function Φ∗ : Rn

+ → R+ of n variables,
defined as

Φ∗(x1, ..., xn) =





x1, if n = 1,

Φ(x1, x2), if n = 2,

Φ(x1,Φ(x2,Φ(x3, ...Φ(xn−2,Φ(xn−1, xn))))), if n ⩾ 3.

It is clear that Φ∗ is monotone increasing in all of its variables as well as Φ.
Recall that a graph G is an ordered pair (V,E) consisting of a set V = V (G) of vertices and a

set E = E(G) of edges. A graph G = (V,E) together with a weight w : E(G) → R+ is called a
weighted graph. Let (G,w) be a weighted graph and let u, v be vertices belonging to a connected
component of G. Let us denote by Pu,v = Pu,v(G) the set of all paths joining u and v in G. For
the path P ∈ Pu,v define the Φ-weight of this path by

wΦ(P ) =

{
0, if E(P ) = ∅,
Φ∗(w(e1), ..., w(en)), otherwise,

where e1, ..., en are all edges of the path P . Write
dwΦ(u, v) = inf{wΦ(P ) : P ∈ Pu,v}.

In the case Φ(x, y) = x + y for the connected graph G the function dwΦ is a shortest-path pseudo-
metric [1] on the set V (G) and in the case Φ(x, y) = max{x, y} it is a subdominant pseudoultra-
metric [2].
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In the next lemma and further we identify a pseudosemimetric space (X, d) with the complete
weighted graph (G,wd) = (G(X), wd) having V (G) = X and satisfying the equality

wd({x, y}) = d(x, y)

for every pair of different points x, y ∈ X.
Lemma 2. ([4]) Let (X, d) be a pseudosemimetric space with the triangle function Φ. Then for
every cycle C ⊆ G(X) and for every e ∈ E(C) the inequality wd(e) ⩽ wΦ(C\e) holds, where C\e
is a path obtained from the cycle C by the removal of the edge e.

We are interested in the following question. Let (G,w) be a weighted graph. Does there exist
a Φ-pseudosemimetric d : V (G) × V (G) → R+ such that the given weight w : E(G) → R+ has a
continuation to d? I.e., the equality

w({u, v}) = d(u, v)

holds for all {u, v} ∈ E(G). If such a continuation exists, then we say that w is a Φ-pseudosemimetrizable
weight.
Theorem 3. ([4]) Let (G,w) be a weighted graph and let Φ be a continuous in both variables
triangle function. The following statements are equivalent.

(i) The weight w is Φ-pseudosemimetrizable.
(ii) The equality w({u, v}) = dwΦ(u, v) holds for all {u, v} ∈ E(G).
(iii) For every cycle C ⊆ G and for every e ∈ C the inequality w(e) ⩽ wΦ(C \e) holds, where

C\e is a path obtained from C by the removal of the edge e.
Corollary 4. ([4]) Let (G,w) be a weighted graph. Then the corresponding statements are equiv-
alent.

(i1) The weight w is pseudometrizable, i.e., Φ(x, y) = x+ y.
(i2) For every cycle C ⊆ G the following inequality holds:

2 max
e∈E(C)

w(e) ⩽
∑

e∈C
w(e).

(ii1) The weight w is pseudoultrametrizable, i.e., Φ(x, y) = max{x, y}.
(ii2) For every cycle C ⊆ G there exist at least two different edges e1, e2 ∈ E(C) such that

w(e1) = w(e2) = max
e∈E(C)

w(e).

(iii1) The weight w is Φ-pseudosemimetrizable with Φ(x, y) = (xp + yp)
1
p , p > 0.

(iii2) For every cycle C ⊆ G and every e ∈ C the following inequality holds:

w(e) ⩽


∑

ẽ∈C\e
wp(ẽ)




1
p

.

(iv1) The weight w is Φ-pseudosemimetrizable with Φ(x, y) = ϕ−1(ϕ(x)+ϕ(y)), where ϕ : [0,∞)→
[0,∞) is a homeomorphism.

(iv2) For every cycle C ⊆ G and every e ∈ C the following inequality holds:

w(e) ⩽ ϕ−1


∑

ẽ∈C\e
ϕ(w(ẽ))


 .
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Although the Burgers equation is the most famous C-integrable model with various applications,
its algebra of generalized symmetries has not been exhaustively described despite a number of
relevant considerations in the literature. Filling this gap in [3], we presented a basis of this algebra
in the most explicit form. We prefered to make a closed and simple proof from scratch, based on
relations between the (1+1)D (linear) heat equation L1, the potential Burgers equation L2 and the
Burgers equation L3,

L1 : ut = uxx
u=ew←→ L2 : wt = wxx + w 2

x

−2wx=v←→ L3 : vt + vvx = vxx,

which leads to the linearization of L3 to L1 by the Hopf–Cole transformation v = −2ux/u. Another
important ingredient is the exhaustive description of generalized symmetries of L1 in [2, Section 6].
The core of the proof is essentially simplified by using the original technique of choosing special
coordinates in the associated jet space. Below, instead of the total derivative operators with respect
to t and x, we use their restrictions to the solution set of the corresponding equation Li,

Dx := ∂x +
∞∑

k=0

zik+1∂zik , Dt := ∂t +
∞∑

k=0

(
Dk
xL

i[zi]
)
∂zik ,

where L1[u] := uxx, L2[w] := wxx + w 2
x , L3[v] := vxx − vvx, zi0 := zi, the jet variable zik is identified

with the derivative ∂kzi/∂xk, k ∈ N, z1 := u, z2 := w and z3 := v.
Recall [1, Section 6] that the algebra of generalized symmetries of the (1+1)-dimensional linear

heat equation L1 is Σ1 = Λ1 ∈ Σ−∞
1 , where Λ1 :=

〈
Qkl, k, l ∈ N0

〉
, Σ−∞

1 :=
{
Z(h)

}
with Qkl :=

(GkPlu)∂u, P := Dx, G := tDx +
1
2
x, Z(h) := h(t, x)∂u, and the parameter function h runs through

the solution set of L1. Elements of Σ−∞
1 are considered trivial generalized symmetries of L1 since

in fact these are Lie symmetries of L1 that are associated with the linear superposition of solutions
of L1. The complement subalgebra Λ1 of Σ−∞

1 in Σ1, which is constituted by the linear generalized
symmetries of the equation L1, can be called the essential algebra of generalized symmetries of this
equation. The algebra Λ1 is generated by the two recursion operators P and G from the simplest
linear generalized symmetry u∂u, and both the recursion operators and the seed symmetry are
related to Lie symmetries.
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Pulling back the elements of the algebra Σ1 by the transformation u = ew, we obtain the algebra
Σ2 = Λ2 ∈ Σ−∞

2 of generalized symmetries of the potential Burgers equation L2, which is thus
isomorphic to the algebra Σ1. As the counterparts of Λ1 and Σ−∞

1 , the subalgebra Λ2 and the
ideal Σ−∞

2 of Σ2 are called the essential and the trivial algebras of generalized symmetries of L2,
respectively.
Theorem 1. The algebra of generalized symmetries of L3 is Σ3 :=

〈
Q̂kl, (k, l) ∈ N 2

0 \{(0, 0)}
〉
with

Q̂kl :=
(
DxĜkP̂l1

)
∂v, where P̂ := Dx − 1

2
v and Ĝ := tDx +

1
2
(x− vt).

Corollary 2. The homomorphism ϕ : Λ2 → Σ3 of the algebra Λ2 of essential generalized symmetries
of the equation L2 to the entire algebra Σ3 of generalized symmetries of the equation L3, which is
induced by the differential substitution −2wx = v, is an epimorphism, and kerϕ = 〈Q̃00〉.
Corollary 3. The algebra Σ3 of generalized symmetries of the Burgers equation L3 is isomorphic
to the quotient algebra A1(R)(−)/〈1〉, where A1(R)(−) is the Lie algebra associated with the first
Weyl algebra A1(R), and 〈1〉 is its center. Hence the algebra Σ3 is simple and two-generated.

The two-generation of Σ3 as a Lie algebra means that there is a pair of its elements such that
Σ3 coincides with its subalgebra containing all successive commutators of these two elements.
Examples of such pairs are in particular {Q20,Q03} and {Q11, Q10 −Q02 +Q30}.

The commutation relations of the algebra Σ3 are

[Q̂kl, Q̂k′l′ ] =
∞∑

i=1

i!

((
k′

i

)(
l

i

)
−
(
k

i

)(
l′

i

))
Q̂k+k′−i, l+l′−i,

where (k, l), (k′, l′) ∈ N 2
0 \ {(0, 0)}, and Q̂00 := 0. In particular, [Q̂11, Q̂kl] = (k − l)Q̂kl, i.e., the

operator adQ̂11 is a diagonal inner derivation in the basis (Q̂kl) and the subspace Γm := 〈Q̂kl |
k − l = m〉 of Σ3 is the eigenspace of the operator adQ̂11 corresponding to the eigenvalue m. The
Jacobi identity for the Lie bracket implies that [Γm,Γm′ ] ⊆ Γm+m′ for any m,m′ ∈ Z. As a result,
the decomposition of the algebra Σ3 as the direct sum of its subspaces Γm, Σ3 = ⊕m∈ZΓm, is a
Z-grading of this algebra.
Corollary 4. The space of generalized symmetries of the Burgers equation L3 that are of order
not greater than n is Σn

3 :=
〈
Q̂kl, (k, l) ∈ N 2

0 \ {(0, 0)}, k + l ⩽ n
〉
, and dimΣn

3 = 1
2
n(n+ 3).

Recall that the maximal Lie invariance algebra gB of L3 is five-dimensional, gB = 〈P̂ t, D̂, K̂, P̂x, Ĝx〉,
where P̂ t = ∂t, D̂ = 2t∂t+x∂x− v∂v, K̂ = t2∂t+ tx∂x+(x− tv)∂v, Ĝx = t∂x+ ∂v, P̂x = ∂x. In fact,
the spaces Σ1

3 =
〈
Q̂01, Q̂10

〉
and Σ2

3 =
〈
Q̂01, Q̂10, Q̂02, Q̂11, Q̂20

〉
of generalized symmetries of the

Burgers equation L3 that are of order not greater than one and two are closed with respect to Lie
bracket of generalized vector fields, i.e., they are a one- and a five-dimensional subalgebras of Σ3,
respectively. They are constituted by the canonical evolution forms of elements of the (nil)radical
〈P̂x, Ĝx〉 of gB and of the entire algebra gB and thus respectively isomorphic to these algebras.
More specifically, the basis elements P̂ t, D̂, K̂, Ĝx and P̂x of gB are associated, up to their signs,
with the elements 2Q̂02, 4Q̂11, 2Q̂20, 2Q̂10 and 2Q̂01 of Σ2

3, respectively.
The algebra Σ1

3 is the only finite-dimensional maximal Abelian subalgebra of Σ3. We conjecture
that the algebra Σ2

3 is the only finite-dimensional maximal subalgebra of Σ3.
Using the results of [1], we can describe maximal Abelian subalgebras of Σ3. Each of the other

maximal Abelian subalgebras of Σ3 is infinite-dimensional since it contains a subalgebra of the form
〈(DxQk1)∂u, k ∈ N〉 with a nonconstant polynomial Q of Ĝ and P̂. Moreover, it coincides with the
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centralizer of an element of Σ3 \ 〈Q̂01, Q̂10〉, which necessarily belongs to it, or, equivalently, with
the centralizer of any element of its relative complement to 〈Q̂01, Q̂10〉.

We also show that the two well-known recursion operators of the Burgers equation and its two
seed generalized symmetries, which are evolution forms of its Lie symmetries, suffice to generate
this algebra within the framework of the formal approach, whereas the zero generalized symmetry
is sufficient as the only seed symmetry if the recursion operators are interpreted as Bäcklund
transformations for the corresponding tangent bundle.
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An infinite Bernoulli convolution governed by an absolutely convergent series r0 =
∞∑
n=1

un is

defined as the distribution of the random variable ζ =
∞∑
n=1

ζnun, where (ζn) is a sequence of inde-
pendent random variables taking values 0 and 1 with probabilities p0 and p1 = 1− p0, respectively.

A generalized infinite Bernoulli convolution is defined as the distribution of the random variable
ξ =

∞∑
n=1

ξnun, where (ξn) is a sequence of independent random variables taking values in {0, 1, ..., r}
with respective probabilities p0, p1, ..., pr. The main object of study in this report is the distribution
of the random variable

ξ =
∞∑

n=1

ξn
sn

= ∆rs
ξ1ξ2...ξn...

,

where s and r are natural parameters such that 1 < s ≤ r.
The set Eξ of values of the random variable ξ is the segment [0, r

s−1
].

According to the Jessen–Wintner theorem, the distribution of a random variable is either purely
discrete, purely singular, or purely absolutely continuous. We are particularly interested in the
conditions under which the distribution is concentrated on a set of Lebesgue measure zero and in
determining the fractal dimension of such a set.

The main difficulties in obtaining a complete answer to these questions arise from the ambiguity
of number representations in the numeral system with base s and the redundant alphabet A =
{0, 1, ..., r}.
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The report is devoted to the case s = 3 = r. From here on, we write

∆rs
α1α2...αk...

= ∆α1α2...αk... =
∞∑

n=1

3−nαn, αn ∈ A ≡ {0, 1, 2, 3}.

Lemma 1. The set C[∆; {0, 1, 3}] = {x : x = ∆α1α2...αn..., αn ∈ {0, 1, 3}} is a nowhere dense,
N-self-similar set of zero Lebesgue measure, whose Hausdorff dimension is equal to log3 3+

√
5

2
.

Theorem 2. Let p0p1p2p3 = 0.
1. If pi = pi+1 = pi+2 =

1
3
, then ξ has a uniform distribution on the unit interval.

2. If there exists pj such that 0 6= pj 6= 1
3
, then the distribution of the random variable ξ s

singular, and:
2.1) if two of the probabilities are zero, then ξ has a Cantor-type distribution with

spectrum of fractal dimension log3 2;
2.2) if exactly one is zero and p1p2 = 0, then ξ has a Cantor-type distribution with

spectrum of fractal dimension log3 3+
√
5

2
;

2.3) if exactly one is zero and p0p3 = 0, then ξ has a singular distribution with a
strictly increasing distribution function, and the fractal dimension of the essential support
of its density is − log3 pp11 pp22 ppii .

Theorem 3. If p1 = 1
3
= p2, then the random variable ξ = ∆ξ1ξ2...ξn... with independent digits ξn ∈

{0, 1, 2, 3} having probabilities p0, p1, p2, p3 has an absolutely continuous distribution. Moreover, the
distribution of ξ is the convolution of the uniform distribution on [0; 1] and a singular Cantor-type
distribution. In all other cases, the distribution of ξ is singular.
Corollary 4. Every infinite Bernoulli convolution governed by the series

1

3
+

1

3
+

1

3
+

1

32
+

1

32
+

1

32
+ ...+

1

3n
+

1

3n
+

1

3n
+ ...,

has a purely singular distribution.
Lemma 5. The sum of two independent singularly distributed random variables

θ =
∞∑

n=1

θn3
−n and ε =

∞∑

n=1

εn3
−n,

where (θn) and (εn) are sequences of independent random variables taking values in {0, 2} and {0, 1},
respectively, with probabilities u, 1 − u and v, 1 − v, has a singular distribution whose spectrum is
the interval [0; 3

2
].

Theorem 6. If p0 = (p0+p1)(p0+p2) then the distribution of ξ is the convolution of two Cantor-type
distributions, namely, the distributions of the random variables

θ = ∆θ1θ2...θn..., ε = ∆ε1ε2...εn...,

where (θn) and (εn) are sequences of independent random variables taking values in {0, 2} and
{0, 1}, with probabilities p0 + p1 and 1− (p0 + p1), and p0 + p2 and 1− (p0 + p2), respectively.
Remark 7. The proof of Theorem 3 is based on the method of characteristic functions (integral
transforms) and the method of extracting the absolutely continuous component.
Remark 8. The problem of describing the topological, metric, and fractal properties of the essen-
tial support of the density

Nξ = {x : F ′
ξ(x) > 0 або F ′

ξ(x) does not exist}
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of the distribution ξ under the condition p0p1p2p3 6= 0, remains open.
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Definition 1. Pre-Hamiltonian flow on the projective plane RP 2 is a flow flows whose lift to the
double cover (S2) is a Hamiltonian flow on S2 with a Hamiltonian that is a Morse function. A
flow is simple if there are no saddle connections between different saddles within it. Topological
equivalence of flows is a homeomorphism of the surface that maps trajectories to trajectories and
preserve their direction.

For the topological classification of pre-Hamiltonian flows on RP 2, we construct a complete
topological invariant of the flow – a distinguishing graph. This invariant is a rooted oreinted tree
and is a Reeb graph. In this case, Hamiltonian flows are divided into two types: 1) those whose
root of the distinguishing graph has degree 1, and 2) those whose root has degree 2. All other
vertices have degree 1 or 3.
Theorem 2. Two simple prohamiltonian flows on the projective plane are topologically equivalent
if and only if their distinguishing graphs are equivalent

The presence of a marked vertex (root) in the distinguishing graph allows for the efficient com-
putation of the number of topologically non-equivalent graphs with a given number of saddles.
Theorem 3. The number of topologically non-equivalent simple pre-Hamiltonian flows with k
saddles on the projective plane RP 2 can be calculated using the formula

N(RP 2)k = Kk +
k−1∑

i=0

KiKk−i−1,

where
K2n = 3(K0K2n−1 +K1K2n−2 + . . .+Kn−1Kn),

K2n+1 = 3(K0K2n +K1K2n−1 + . . .+Kn−1Kn+1) +
3K2

n +Kn

2
.
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A well-known result of the theory of differentiation of integrals is the Lebesgue Differentiation
Theorem. This theorem states that for any integrable function f ∈ L1(Rn), for almost every point
x ∈ Rn, the average value of |f | over balls centered at x converges to f(x) when the radius of these
balls shrinks to zero. This important result is a consequence of the weak-type boundedness of the
Hardy-Littlewood Maximal Operator in Lp spaces.

Naturally, one might ask whether this result remains true if we consider averages over other
types of subsets, such as a collection of rectangles assigned to a set of directions.

In this talk, we will discuss a recent result that provides a condition on a set of directions Ω ⊆ S1

sufficient to show the admissibility of Kakeya-type sets, extending prior work of Bateman and Katz.
This condition guarantees that the associated directional maximal operator MΩ is unbounded on
Lp(R2) for every 1 ≤ p <∞.
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Everywhere further, (X, d, µ) and (X ′, d ′, µ ′) are metric spaces with metrics d and d ′ and locally
finite Borel measures µ and µ ′, correspondingly. Let G and G ′ be domains with finite Hausdorff
dimensions α and α ′ ⩾ 2 in (X, d, µ) and (X ′, d ′, µ ′), respectively. For x0 ∈ X and r > 0, B(x0, r)
and S(x0, r) denote the ball {x ∈ X : d(x, x0) < r} and the sphere {x ∈ X : d(x, x0) = r},
correspondingly. Put

d(E) := sup
x,y∈E

d(x, y) .

Given 0 < r1 < r2 < ∞, denote A = A(x0, r1, r2) = {x ∈ X : r1 < d(x, x0) < r2}. Let p ⩾ 1 and
q ⩾ 1, and let Q : G→ [0,∞] be a measurable function. Similarly to [1, Ch. 7], a homeomorphism
f : G → G ′ is called a ring Q-homeomorphism at a point x0 ∈ G with respect to (p, q)-moduli, if
the inequality

Mp(f(Γ(S(x0, r1), S(x0, r2), A(x0, r1, r2)))) ⩽
∫

A(x0,r1,r2)∩G

Q(x) · ηq(d(x, x0)) dµ(x) (1)

holds for all 0 < r1 < r2 < r0 := d(G) and each measurable function η : (r1, r2)→ [0,∞] with
r2∫

r1

η(r) dr ⩾ 1 . (2)

We say that f : G → G ′ is a ring Q-homeomorphism at a point x0 ∈ G, if the latter is true for
p = α ′ and q = α. For X = X ′ = Rn, n ⩾ 2, we set d(x, y) = d ′(x, y) = |x − y|, and µ = µ ′ = m,
where m is the Lebesgue measure. Due to [2], a domain D in Rn is called a quasiextremal distance
domain (a QED-domain for short) if

M(Γ(E,F,Rn)) ⩽ A ·M(Γ(E,F,D)) (3)
for some finite number A ⩾ 1 and all continua E and F in D. In the same way, one can define
quasiextremal distance domains in an arbitrary metric measure space.

Given a compact set K in a domain D, we set d(K, ∂D) = inf
x∈K,y∈∂D

d(x, y). If ∂D = ∅, we set
d(K, ∂D) =∞.

Given a domain D in Rn, n ⩾ 2, a Lebesgue measurable function Q : D → [0,∞], a compact
set K ⊂ D and numbers A ⩾ 1, δ > 0 denote by FA,δK,Q(D) a family of all mappings f : D → Rn

satisfying the relations (1)–(2) at any point x0 ∈ D with d(x, y) = d ′(x, y) = |x−y| and µ = µ ′ = m,
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where m is the Lebesgue measure, such that Df := f(D) is a QED-domain with A in (3) and, in
addition, d(f(K), ∂Df ) ⩾ δ. The following result holds.

Theorem 1. If Q ∈ L1(D), then there exist constants C,C1 > 0 such that

|f(x)− f(y)| ⩾ C1 · exp
{
− ‖Q‖1A
C|x− y|n

}
(4)

for all x, y ∈ K and every f ∈ FA,δK,Q(D).

Theorem 1 admits an analogue in metric spaces, which we will now formulate.

Let X be a metric space. We say that the condition of the complete divergence of paths is
satisfied in D ⊂ X if for any different points y1 and y2 ∈ D there are some w1, w2 ∈ ∂D and paths
α2 : (−2,−1] → D, α1 : [1, 2) → D such that 1) α1 and α2 are subpaths of some geodesic path
α : [−2, 2]→ X, that is, α2 := α|(−2,−1] and α1 := α|[1,2); 2) 2) the geodesic path α joins the points
w2, y2, y1 and w1 such that α(−2) = w2, α(−1) = y2, α(1) = y1, α(2) = w1.

Note that the condition of the complete divergence of the paths is satisfied for an arbitrary
bounded domain D ′ of the Euclidean space Rn. Let (X,µ) be a metric space with measure µ and of
Hausdorff dimension n. For each real number n ⩾ 1, we define the Loewner function Φn : (0,∞)→
[0,∞) on X as

Φn(t) = inf{Mn(Γ(E,F,X)) : ∆(E,F ) ⩽ t} , (5)
where the infimum is taken over all disjoint nondegenerate continua E and F in X and

∆(E,F ) :=
dist (E,F )

min{d(E), d(F )} .

A pathwise connected metric measure space (X,µ) is said to be a Loewner space of exponent n,
or an n-Loewner space, if the Loewner function Φn(t) is positive for all t > 0 (see [1, Section 2.5]
or [3, Ch. 8]). Observe that, Rn and Bn ⊂ Rn are Loewner spaces (see [3, Theorem 8.2 and
Example 8.24(a)]).

Given a domain D in X, n ⩾ 2, a measurable function Q : D → [0,∞], a compact set K ⊂ D

and numbers A, δ > 0 denote by FA,δK,Q(D) a family of all mappings f : D → X ′ satisfying the
relations (1)–(2) at any point x0 ∈ D, such that Df := f(D) is a compact QED-subdomain of X ′

with A in (3) and, in addition, d ′(f(K), ∂Df ) ⩾ δ. The following result holds.

Theorem 2. Let (X, d, µ) and (X ′, d ′, µ ′) be metric spaces with metrics d and d ′ and locally finite
Borel measures µ and µ ′, correspondingly. Assume that, the condition of the complete divergence
of paths is satisfied in a domain D ⊂ X. Let X ′ be a n-Loewner space in which the relation
µ(BR) ⩽ C ∗Rn holds for some constant C ∗ ⩾ 1, for some exponent n > 0 and for all closed balls
BR of radius R > 0. If Q ∈ L1(D), then there exist constants C,C1 > 0 such that

d ′(f(x), f(y)) ⩾ C1 · exp
{
− ‖Q‖1A
Cdn(x, y)

}
(6)

for all x, y ∈ K and every f ∈ FA,δK,Q(D).
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On floating bodies and related topics
Dmitry Ryabogin
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This is a joint work with Maria Alfonseca, Fedor Nazarov, Alina Stancu and Vlad Yaskin.
Let K be a convex body in R2. For every θ ∈ R and the corresponding unit vector e(θ) =

(cos θ, sin θ) and for every t ∈ R, define the half-planes
W+(θ, t) = {x : 〈x, e(θ)〉 ≥ t} and W−(θ, t) = {x : 〈x, e(θ)〉 ≤ t}.

If 0 < D < 1, then for every θ ∈ R , there is a unique t(θ) such that
vol2(W+(θ, t(θ)) ∩K) = D vol2(K).

The corresponding convex body of flotation KD is defined as

KD =
⋂

θ∈R
W−(θ, t(θ)).

We investigate the homothety conjecture for convex bodies of flotation of planar domains. We
show that there is a density close to 1

2
for which there is a body K different from an ellipse with

the property that KD is homothetic to K.
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spaces
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The talk is based on my recent article [4].
One of the basic theorems in Analysis is the Ascoli theorem which states that if X is a k-

space, then every compact subset of Ck(X) is evenly continuous, see Theorem 3.4.20 in [2]. Being
motivated by the Ascoli theorem we introduced and studied in [1] the class of Ascoli spaces. A
Tychonoff spaceX is called an Ascoli space if every compact subset K of Ck(X) is evenly continuous,
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that is the map X × K 3 (x, f) 7→ f(x) is continuous. In other words, X is Ascoli if and only if
the compact-open topology of Ck(X) is Ascoli in the sense of [5, p.45].

Being motivated by the classical notion of c0-barrelled locally convex spaces we defined in [3] a
Tychonoff spaceX to be sequentially Ascoli if every convergent sequence in Ck(X) is equicontinuous.
Clearly, every Ascoli space is sequentially Ascoli, but the converse is not true in general.

Let X be a Tychonoff space, and let E ′
β be the dual space of a locally convex space E. We shall

say that a map T : X → E ′ is almost k-compact (resp., almost k-sequential) if it is weak∗ continuous
and there are a neighborhood U of zero in E and a compact subset (resp., a null sequence) K of
Ck(X) such that the family {TE(x, a) : a ∈ U} is contained in the absolutely convex closed hull
acx(K) of K. Now we formulate the main result of the talk.
Theorem 1. For a Tychonoff space X, the following assertions are equivalent:

(i) X is an Ascoli (resp., sequentially Ascoli) space;
(ii) for each cardinal Γ, every k-continuous and almost k-compact (resp., almost k-sequential)

map T : X → `∞(Γ) is continuous;
(iii) for each Banach space E, every k-continuous and almost k-compact (resp., almost k-

sequential) map T : X → E ′
β is continuous.
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Liminal SL2Zp-representations and odd-th cyclic covers of
genus one two-bridge knots
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Bunkyo-ku, 112-8610, Tokyo, Japan)
E-mail: sakamo10ho73@gmail.com

We briefly survey a joint work with Ryoto Tange and Jun Ueki [STU25].
Theorem 1. It is known that every genus one two-bridge knot is realized as a double twist knot
of type J(2k, 2l) with (0, 0) 6= (k, l) ∈ Z2 defined by the following diagram.

Definition 2. Let p be a prime number. When n ranges over natural numbers, the rings Z/pnZ
naturally form an inverse system. The inverse limit of this system is called the ring of p-adic
integers and denoted by Zp := lim←−Z/pnZ.
Definition 3. Let π be a group.
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(1) A function χ : π → Zp is called an SL2Zp-character if there exists an SL2-representation ρ
over an extension of Zp such that χ = tr ρ holds.

(2) An SL2Zp-character is said to be liminal if it is absolutely reducible and its every open
neighborhood contains an absolutely irreducible SL2Zp-character. Here, a neighborhood refers to
a neighborhood with respect to the p-adic distance on the character variety.
Theorem 4. Let K = J(2k, 2l) be a genus one two-bridge knot in S3. If a prime number p
divides the size of the 1st homology group of some odd-th cyclic branched cover of K, then its group
π1(S

3 −K) admits a liminal SL2Zp-character.
In the proof of this theorem, a nature of certain Lucas-type sequences plays a key role.

Example 5. The sequence (Ln) starting with L0 = 2, L1 = 1, and defined by Ln = Ln−1 + Ln−2

is called the Lucas sequence. Calculating from the smallest terms, we get:

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, etc.

Focusing on the prime factors of the odd-indexed terms, we get:

L3 = 22, L5 = 11, L7 = 29, L9 = 22 × 19, L11 = 199, L13 = 521, L15 = 11× 31, etc.

The prime factors are either 2, or have a last digit of 1 or 9. This observation can be generalized
as follows: If a prime number p divides L2n+1 for some n ∈ Z≥0, then p = 2 or the Legendre symbol
satisfies

(
5

p

)
= 1.

Proposition 6. Let m ∈ Z. Let a and b be the solutions of the equation t2 − t + m = 0, and
define Ln = an + bn for any n ∈ N. If a prime number p divides L2n+1 for some n ∈ Z≥0, then the
Legendre symbol satisfles

(
4m2 −m

p

)
= 1.

Proof. Define Fn =
an − bn
a− b for any n ∈ N. Then, Fn ∈ Z, and

L2
n + (4m− 1)F 2

n = 4mn

holds. If p divides L2n+1 for some n ∈ Z≥0, then

(4m− 1)F 2
2n+1 ≡ 4m2n+1mod p.

So, m(4m− 1) is a square mod p. □
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Proof of Theorem 4 (Outline). A Seifert matrix of J(2k, 2l) is given by V =

(
k 1
0 l

)
, so the

Alexander polynomial is
∆J(2k,2l)(t) = det (tV − V ⊥) = klt2 + (1− 2kl)t+ kl.

Let α and β denote the solutions ∆K(t) = mt2 − (1− 2m)t+m = 0, where m = kl.
Then, by using Fox–Weber formula, we can write

r2n+1 = |Res(tn − 1,∆K(t))| = m2n+1(2− α2n+1 − β2n+1).

Let a and b denote the solutions of t2− t+m = 0. Then, {a2, b2} = {−mα,−mβ}, and we obtain
r2n+1 = L2

2n+1. Therefore, by Proposition 6, if a prime number p divides r2n+1 for some n ∈ Z≥0,

then the Legendre symbol satisfies
(
4k2l2 − kl

p

)
= 1.

On the other hand, let S∗(z) ∈ Z[z] denotes the Chebyshev polynomial of the 2nd kind and
define

fk,l(x, y) = Sl(z)− (1 + (−x2 + y + 2)Sk−1(y)(Sk(y)− Sk−1(y))Sl−1(z),

z = 2 + (y − 2)(−x2 + y + 2)S2
m−1(y).

Then Tran’s calculation [Tra18] and Hensel’s lemma assure that liminal SL2Zp characters correp-

sonds to intersection points (±
√
4− 1

kl
, − 1

kl
) of the curves fk,l(x, y) = 0 and y− 2 = 0 in Z2

p. This
completes the proof. □
Remark 7. The analogies between knots and primes, or 3-manifolds and number rings have played
important roles since the era of Gauss (cf.[Mor24]). In modern times, among other things, the anal-
ogy between the Alexander–Fox theory of Z-covers and the Iwasawa theory of Zp-extensions of num-
ber fields, and that between deformation theories of knot group representations (e.g., Thurston’s
hyperbolic deformation) and Galois representations (e.g., due to Hida–Mazur) have been pointed
out. There are special interests in irreducible SL2Zp-representations whose residual representations
are reducible. In our study [STU25], following Mazur [Maz11], we aimed to “go the other way”.
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On fuzzy K-ultrametric spaces
Oleksandr Savchenko

(Kherson State University, Universyteska st., 27, Kherson, 73003, Ukraine)
E-mail: savchenko.o.g@ukr.net

Let K ∈ [0,∞]. A metric space (X, d) is called a K-ultrametric space [1, 2] if d(x, y) ≤ K
whenever min{d(x, z), d(z, y)} ≤ K. The talk is devoted to a counterpart of this notion in the
realm of fuzzy metric spaces [3].
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A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm if it satisfies the following
conditions.

(1) ∗ is associative and commutative,
(2) ∗ is continuous,
(3) a ∗ 1 = a for all a ∈ [0, 1],
(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].
A triple (X,M, ∗) is called a fuzzy metric space if X is a nonempty set, ∗ is a continuous t-norm

and M : X ×X × (0,∞)→ R is a map such that for every x, y, z ∈ X and t, s > 0 we have
1) 0 < M(x, y, t) ≤ 1;
2) M(x, y, t) = 1 if and only if x = y;
3) M(x, y, t) =M(y, x, t);
4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s);
5) M(x, y, ·) : (0,∞)→ (0, 1] is continuous.
A triple (X,M, ∗) is called a fuzzy ultrametric space if X is a nonempty set, ∗ is the minimum

∧ and M : X ×X × (0,∞) → R is a map satisfying conditions 1), 2), 3) and 5) of this definition
and moreover

4’)M(x, y, t)∗M(y, z, s) ≤M(x, z,max{t, s} for x, y, z ∈ X and t > 0. Condition 4’) is equivalent
to the condition M(x, y, t) ∗M(y, z, t) ≤M(x, z, t).

Given a nondecreasing function K : (0,∞) → [0, 1], we define a fuzzy K-ultrametric as a fuzzy
metric satisfying the condition M(x, y, t) ∧M(y, z, t) ≤M(x, z, t) whenever

max{M(x, z, t),M(z, y, t)} ≥ K(t).

We establish some properties of fuzzy K-ultrametrics and consider questions of fuzzy K-ultra-
metrization of products, hyperspaces, and spaces of measures on fuzzy K-ultrametric spaces.
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On Koebe-Bloch theorem for mappings with inverse
Poletsky inequality
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Valery Targonskii
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E-mail: w.targonsk@gmail.com

Let us recall the formulation of the classical Koebe theorem.
Theorem A. Let f : D→ C be an univalent analytic function such that f(0) = 0 and f ′(0) = 1.

Then the image of f covers the open disk centered at 0 of radius one-quarter, that is, f(D) ⊃
B(0, 1/4).
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The main fact contained in the paper is the statement that something similar has been done
for a much more general class of spatial mappings. Below dm(x) denotes the element of the
Lebesgue measure in Rn. Everywhere further the boundary ∂A of the set A and the closure A
should be understood in the sense of the extended Euclidean space Rn. Recall that, a Borel function
ρ : Rn → [0,∞] is called admissible for the family Γ of paths γ in Rn, if the relation

∫

γ

ρ(x) |dx| ⩾ 1

holds for all (locally rectifiable) paths γ ∈ Γ. In this case, we write: ρ ∈ admΓ. The modulus of Γ
is defined by the equality

M(Γ) = inf
ρ∈ admΓ

∫

Rn

ρn(x) dm(x) .

Let y0 ∈ Rn, 0 < r1 < r2 <∞ and
A = A(y0, r1, r2) = {y ∈ Rn : r1 < |y − y0| < r2} .

Given x0 ∈ Rn, we put B(x0, r) = {x ∈ Rn : |x − x0| < r} , Bn = B(0, 1) , S(x0, r) = {x ∈ Rn :
|x − x0| = r} . A mapping f : D → Rn is called discrete if the pre-image {f−1 (y)} of any point
y ∈ Rn consists of isolated points, and open if the image of any open set U ⊂ D is an open set
in Rn. Given sets E, F ⊂ Rn and a domain D ⊂ Rn we denote by Γ(E,F,D) the family of all
paths γ : [a, b] → Rn such that γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ D for t ∈ (a, b). Given a mapping
f : D → Rn, a point y0 ∈ f(D) \ {∞}, and 0 < r1 < r2 < r0 = sup

y∈f(D)

|y − y0|, we denote by

Γf (y0, r1, r2) a family of all paths γ in D such that f(γ) ∈ Γ(S(y0, r1), S(y0, r2), A(y0, r1, r2)). Let
Q : Rn → [0,∞] be a Lebesgue measurable function. We say that f satisfies the inverse Poletsky
inequality at a point y0 ∈ f(D) \ {∞} if the relation

M(Γf (y0, r1, r2)) ⩽
∫

A(y0,r1,r2)∩f(D)

Q(y) · ηn(|y − y0|) dm(y) (1)

holds for any Lebesgue measurable function η : (r1, r2)→ [0,∞] such that
r2∫

r1

η(r) dr ⩾ 1 . (2)

The relations (1) are proved for different classes of mappings, see e.g. [2].
Set qy0(r) = 1

ωn−1rn−1

∫
S(y0,r)

Q(y) dHn−1(y), where ωn−1 denotes the area of the unit sphere Sn−1

in Rn. We say that a function ϕ : D → R has a finite mean oscillation at a point x0 ∈ D, write
ϕ ∈ FMO(x0), if lim sup

ε→0

1
Ωnεn

∫
B(x0, ε)

|ϕ(x)−ϕε| dm(x) <∞, where ϕε = 1
Ωnεn

∫
B(x0, ε)

ϕ(x) dm(x) and

Ωn is the volume of the unit ball Bn in Rn. We also say that a function ϕ : D → R has a finite
mean oscillation at A ⊂ D, write ϕ ∈ FMO(A), if ϕ has a finite mean oscillation at any point
x0 ∈ A. Let h be a chordal metric in Rn,

h(x,∞) =
1√

1 + |x|2
, h(x, y) =

|x− y|√
1 + |x|2

√
1 + |y|2

, x 6=∞ 6= y ,

and let h(E) := sup
x,y∈E

h(x, y) be a chordal diameter of a set E ⊂ Rn (see, e.g., [1, Definition 12.1]).
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Given a continuum E ⊂ D, δ > 0 and a Lebesgue measurable function Q : Rn → [0,∞] we denote
by FE,δ(D) the family of all open discrete mappings f : D → Rn, n ⩾ 2, satisfying relations (1)–(2)
at any point y0 ∈ Rn such that h(f(E)) ⩾ δ. The following statement holds, cf. [3].
Theorem 1. Let D be a domain in Rn, n ⩾ 2, and let B(x0, ε1) ⊂ D for some ε1 > 0.

Assume that, Q ∈ L1(Rn) and, in addition, one of the following conditions hold:
1) Q ∈ FMO(Rn);

2) for any y0 ∈ Rn there is δ(y0) > 0 such that
δ(y0)∫

0

dt

tq
1

n−1
y0 (t)

=∞ . (3)

Then there is r0 > 0, which does not depend on f, such that
f(B(x0, ε1)) ⊃ Bh(f(x0), r0) ∀ f ∈ FE,δ(D) ,

where Bh(f(x0), r0) = {w ∈ Rn : h(w, f(x0)) < r0}.
Remark 2. The condition Q ∈ FMO(∞) of the condition (3) for y0 =∞ must be understood as
follows: these conditions hold for y0 =∞ if and only if the function Q̃ := Q

(
y

|y|2
)
satisfies similar

conditions at the origin.
The result mentioned above is obtained in [4].
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On ruled affine submanifolds with two-dimensional base
Olena Shugailo

(V. N. Karazin Kharkiv National University, Kharkiv, Ukraine)
E-mail: shugailo@karazin.ua

When we study affine submanifolds with flat connection [1, 2, 3] or rank two affine fundamental
form [4], it often turns out that representatives of such submanifolds are ruled submanifolds. So,
they deserve detailed research.

We consider generalized ruled affine submanifolds, namely ruled affine submanifolds with 2-
dimensional base and n−2 rulings, in case of codimension 1 and 2. We obtain such a type of ruled
affine submanifolds (codimension 2) when we study affine submanifolds of rank two [4].

Detailed description of ruled affine submanifolds of arbitrary dimension and codimension in the
classical sense, that is, ruled submanifolds over a curve, can be found in [5].

In case of codimension 1 the base of the ruled affine submanifold is a hyperbolic-type surface in
R3. In case of codimension 2 the base of the ruled affine submanifold is an elliptic-type surface in
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R4. We find conditions on the directions of rulings that follow from the condition of completeness
of the affine immersion. In particular, we receive all affine characteristics (induced connection,
transversal connection, affine fundamental forms, Weingarten operators, curvature tensor) of such
an affine immersion in case the base surface is a complex curve.
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100th anniversary of Sinyukov Mykola Stepanovych
(1925-1992)
Olena Sinyokova

(The State Institution “South Ukrainian National Pedagogical University named after K. D.
Ushynsky”)

E-mail: olachepok@ukr.net

On the 4th of July we will mark the 100th anniversary of the date of birth of the outstanding
Ukrainian geometrician Sinyukov Mykola Stepanovych (1925 – 1992), doctor of Physical and Math-
ematical Sciences, professor, professor of Odesa I. I. Mechnikov State University. There are the
articles dedicated to the memory of Mykola Sinyukov in the books of abstracts of the International
Conferences “Geometry in Odesa – 2010” and “Geometry in Odesa – 2015”. The general facts of
his biography and his principal scientific achievements are represented there.

On some aspects of vanishing theorems of global character
about holomorphically projective mappings of complete

Kahlerian spaces
Helena Sinyukova

(State institution «South Ukrainian National Pedagogical University named after K. D.
Ushinsky»)

E-mail: olachepok@ukr.net

Generalization of Bochner’s technique (see, for example, [1]) allows to extend to noncompact but
complete Kahlerian spaces a number of theorems of holomorphically projective unique definability
on the whole that have been proved previously only to the compact ones (see, for example, [2]). In
particular, the next theorems are true.
Theorem 1. Complete connected Kahlerian Cr-space Kn (n > 2, r > 2) with positive defined
metric form and non-negatively defined on the set of symmetric tensors bij form

Tαγσβb
αβbγσ (Tαγσβ = gγβRασ −Rαγσβ)
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doesn’t admit non-trivial (different from the affine) holomorphically projective mappings on the
whole.
Theorem 2. Complete connected Kahlerian Cr-space Kn (n > 2, r > 4) with strictly defined form

(2Rγ
α,βγ − 3R γ

αβ,.γ)η
αηβ

doesn’t admit non-trivial (different from the affine) holomorphically projective mappings on the
whole.
Theorem 3. Complete connected Kahlerian Cr-space Kn (n > 2, r > 4) with strictly defined
form Riα β

.. , . iη
αηβ doesn’t admit non-trivial (different from the affine) holomorphically projective

mappings on the whole.
Examples of Kahlerian spaces of considered types are pointed out.
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Normal subgroups of iterated wreath products of
symmetric groups

Ruslan Skuratovskii
(Institute of applied mathematics and mechanics of the NASU, Kiev, Ukraine, )

E-mail: Skuratovskii@nas.gov.ua

In this research we continue our previous investigation of wreath product normal structure [1, 2].
Normal subgroups and there structures for finite and infinite iterated wreath products Sn1 o . . . oSnm ,
n,m ∈ N and An o Sn are founded.

Let k(π) be the number of cycles in decomposition of permutation π of degree n. The number
n− k(π) is denoted by dec(π), and is called a decrement [6] of permutation π. If π1, π2 ∈ Sn, then
the following formula holds:

dec(π1 · π2) = dec(π1) + dec(π2)− 2m,m ∈ N, (1)
Definition 1. The permutational subwreath product G ooH is the semi-direct product G n H̃X ,
where G acts on the subdirect product [4] H̃X by the respective permutations of the subdirect
factors. Provided the specification of H̃X is established separately.
Definition 2. The set of elements from Sn o Sn, n ⩾ 3 which presented by the tableaux of form:
[e]0, [a1, a2, . . . , an]1, satisfying the following condition

n∑

i=1

dec([ai]1) = 2k, k ∈ N, (2)

be called a generalized alternating group of first level Ã(1)
n , and denote this set by E ooÃn. Note

that condition (2) uniquely identifies subdirect product.
We spread this definition on 3-multiple wreath product by recursive way.
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Definition 3. The subgroup E o Ã(1)
n be denoted by Ã(2)

n .

Theorem 4. The subgroup Ã(1)
n has normal rank n−1 [7] in Sn oSn, n ⩾ 3 provided n ≡ 1(mod2)

and normal rank n iff n ≡ 0(mod2) and n ⩾ 3.

Theorem 5. The subgroup Ã(1)
3 of S3 o S3 has the structure Ã(1)

3 ' (C3 × C3 × C3)o (C2 × C2).
The structure of subgroup Ã(1)

n ≤ Sn o Sn is Ã(1)
n ' (

∏n
i=1An)o (

∏n−1
i=1 C2).

Definition 6. The set of elements from Sn o Sn o Sn, n ⩾ 3 presented by the tables [3] form:
[e]0, [e, e, . . . , e]1, [a1, a2, . . . , an]2, satisfying the following condition

n∑

i=1

dec([ai]2) = 2k, k ∈ N, (3)

be denoted by Ã(2)

n2 . Note that condition (3) uniquely identifies subdirect product in
n2∏
i=1

Sn as base
of subwreath product, the similar subdirect product describing commutator of wreath product was
investigated by us in [9] in researсh of pronormality it appears in [8].

Proposition 7. The subgroup Ã(1)
n ◁Sn oSn as well as Ã(2)

n ◁Sn oSn oSn. Furthermore Ã(2)
n ◁ Ã

(2)

n2 .

Definition 8. A subgroup in Sn o Sn is called T̃n if it consists of:
(1) elements of E o An ,
(2) elements with the tableau [3] presentation [e]1, [π1, . . . , πn]2, that πi ∈ Sn \ An.

One easy can validates a correctness of this definition, i.e. that the set of such elements form a
subgroup and its normality. This subgroup has structure

T̃n ' (An × An × · · · × An︸ ︷︷ ︸
n

)o C2 ' Sn ⊞ Sn . . .⊞ Sn︸ ︷︷ ︸
n

,

where the operation ⊞ of a subdirect product is subject of item 1) and 2)

Remark 9. The order of T̃n is (n!)n

2n−1 .
Definition 10. The unique minimal normal subgroup is called the monolith.
Theorem 11. The monolith of Sn o Sm is e o Am.

Definition 12. The set of elements from
k

o
i=1

Sni
, ni ⩾ 3 with depth m

satisfying the following condition
nj∑

i=1

dec([ai]j) = 2t, t ∈ N, m ≤ j ≤ k, [ai]j = e, whenever j = 1,m− 1 (4)

be called Ã(m,k)

nj , where m < k.

Theorem 13. The order of normal subgroup Ã
(1,k)

nj is (1
2
)k · (n!)(n

(k+1)−1
n−1

) and the order of the

quotient
k

o
i=1

Sni

/
Ã

(1,k)

nj is 2k. The order of generalized alternating group of k-th level Ã(k)

nk is 2nk−1.

Theorem 14. Proper normal subgroups in Sn o Sm, where n,m ≥ 3 with n,m 6= 4 are of the
following types:
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(1) subgroups that act only on the second level are

Ã(1)
m , T̃m, E o Sm, E o Am,

(2) subgroups that act on both levels are An ooÃ(1)
m , Sn ooB̃(1)

m , An o Sm,
wherein the subgroup Sn ooÃm ' Sn ⋌ (Sm ⊠ Sm ⊠ Sm . . .⊠ Sm︸ ︷︷ ︸

n

) endowed with the subdirect product

satisfying to condition (2).

The group B̃
(1)
n is isomorphic copy of Ã(1)

n which is realized by another embedding in AutX [2].
The lattice of invariant subgroups for Sn o Sn, n ≡ 0 (mod2) is presented on Fig. 1.

FiGURE 14.1. Lattice of invariant subgroups Sn o Sn for the case n ≡ 0 (mod2)

Lemma 15. Any 2 normal subgroups Nl, Nj ◁
k

o
i=1

Sni
, ni ⩾ 3 are mutually commutative NlNj =

NjNl.

A group N of AutX [k] is said to be a group of depth d = d (N) if N contain trivial permutations
on levels 1, ..., d− 1, and first non-trivial permutation on level number d ≤ k.

A group N of AutX [k] is said to be a group of height h(N), where k is multiplicity of wreath
product, if the difference h = k − d (N), where d (N) is depth of N . The set of normal subgroups
of height h in AutX [k] is denoted by N (h, k). Let us denote the number of normal subgroups of
height h in AutX [k] as n (h, k). We denote the i-th normal subgroup of height h in AutX [k] as
Ni (h, k). According to Theorem 14 N(2, 2) = {Ni(2, 2) : 1 ≤ i ≤ 5}.
Theorem 16. The full list of normal subgroups of W = Sn oSn oSn ' AutX [3] consists of 50 normal
subgroups.

1 subgroups of height 2 on base of set N(2, 2) takes form E o Ni(2, 2): E o An ooÃ(1)
n , E o An o

Sn E o Sn ooÃ(1)
n , E o Sn ooÃ(1)

n E o Sn ooB̃(1)
n , E o Sn o Sn. There are 5 new subgroups.

2 subgroups of height 2 in AutX [3] that based on new subgroups of X3: Ãn2 or B̃n2:
E oSn ooÃn2, E oAn ooB̃n2, E oAn ooÃn2, E oAn ooB̃n2, E oÃ(2)

n ooÃ(2)

n2 , and subclass with subgroup
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Hi on X1 such that Hi ∈ {Ã(1)
n , B̃

(1)
n , T̃

(1)
n } so subgroups takes form E ooHi ooÃn2, E ooHi ooB̃n2.

Therefore this class has 10 new subgroups.
3 subgroups of N(2, 3) having a level subgroups on X2 ⊂ X [3] such that from last level of N(2, 2)
and one of them on X3 There are 3 subgroup such level subgroups Hi ∈ {Ãn, B̃n, Sn}. Thus,
there are 9 subgroups of form: E o Ãn oHi, E o T̃n oHi, E o B̃n oHi.
Thus, the total number of normal subgroups in of height 2 is 24.

4 subgroups of height 1 based on normal subgroups of type N(1, 2):
∏9

i=1An, T̃n, Ãn, B̃n,∏9
i=1 Sn. And new subgroups of type N(1, 3) Ãn2, B̃n2, T̃n

(2)
. Hence, here are 8 new

subgroups.
5 subgroups of height 3 admit on first level Sn or An, on second one of {Ãn, B̃n, S

3
n}, on third

{Ãn2 , B̃n2 , S9
n}. Thus, there 18 normal subgroups in N(3, 3).

Remark 17. Note that E ooÃ(1)
n ' Ã

(2)
n contains in the family E oNi(Sn o Sn).

We denote by AutfX∗ the group of all finite automorphism of spherically homogeneous rooted
tree.
Theorem 18. Let H ◁AutfX

∗ having depth k, then H contains k-th level subgroup P having all
even vertex permutations pki ∈ An on Xk and trivial permutations in vertices of rest of levels.
Furthermore P is normal in AutfX∗ provided k is last active level of AutfX∗.

Theorem 19. The order of normal subgroup Ã
(1,k)

nj is (1
2
)k · (n!)(n

(k+1)−1
n−1

) and the order of the

quotient
k

o
i=1

Sni

/
Ã

(1,k)

nj is 2k. The order of generalized alternating group of k-th level Ã(k)

nk is 2nk−1.

To study the parity of elements at all levels, we factorize by the maximal normal subgroup Ã1,k
ni

that contains the generalized alternating group of permutations at each level.
Lemma 20. The following homomorphism Wn/Ã

k
nk
∼= Wn−1 o C2 holds.

Theorem 21. The quotient
k

o
i=1

Sni
by Ã(1,k)

nj is the following group
k∏
i=1

Z2.
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Let X be a compact Hausdorff topological space, A = C(X), and let B be a closed self-adjoint
subalgebra of the algebra A. Then the classic Shilov’s theorem says that equivalence relation RB

on the space X, defined by the formula:

RB = {(x, y) ∈ X ×X : ∀b ∈ B, b(x) = b(y)}

is a closed equivalence relation, and B is the algebra of functions invariant under RB.
This work explores the relationship between the category of closed equivalence relations on

compact topological spaces and the category of pairs of commutative C∗-algebras. It is shown that
these categories are equivalent.

To describe this equivalence, the functors C and Σ are constructed. The functor C assigns to an
object (X,R) in the category of closed equivalence relations the pair (C(X), BR), where C(X) is
the algebra of continuous functions on X and BR is the algebra of invariant functions with respect
to R. The functor Σ assigns to an object (A,B) in the category of pairs of commutative C∗-algebras
the spectrum of this pair, that is spectrum Σ(A) of the algebra A and a natural equivalence relation
on Σ(A).
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On three-dimensional equidistant pseudo-Riemannian
spaces

Andrii Soloviov
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E-mail: andrey-solovyov@stud.onu.edu.ua

A pseudo-Riemannian space Vn with metric tensor gij is called equidistant if there exists in it a
vector field φi 6≡ 0 (also called an equidistance vector) that satisfies the equation

φi,j = τgij. (1)
where τ is some invariant, and the comma “,” is the sign of the covariant derivative in Vn. When
τ 6= 0 this is the equidistant space of the basic case, and when τ = 0 it is the special case [1].

The integrability conditions of the basic equations (1) have the form
φαR

α
· ijk = τ,kgij − τ,jgik. (2)

In equidistant spaces, the equidistant vector is proportional to the tensor τ,i. Since φi 6≡ 0, there
exists a vector ξi such that the convolution φαξα = 1 and, then, from the integrability conditions
(2) it is not difficult to obtain that

τ,i = Bφi, B
def
= τ,αξ

α. (3)
From these same conditions, multiplying by gij and folding over the indices i, j, we obtain

τ,i =
1

(n− 1)
φαR

α
· i (4)

For n = 3 the curvature tensor in pseudo-Riemannian spaces has the following form [2]:

Rijkl = Rilgjk −Rikgjl +Rjkgil −Rjlgik −
R

2
(gilgjk − gikgjl). (5)

Next, let’s consider (4) in (3) for n = 3

φαR
α
· i = 2Bφi (6)

Taking into account equidistance and (6), from (5) we obtain the following identity

φk(gjl(
R

2
− B)−Rjl)− φl(gjk(

R

2
− B)−Rjk) = 0. (7)

From here we obtain the following form for the Ricci tensor

Rjl = φjφlΦ + gjl(
R

2
− B), Φ

def
= ξαξβR

αβ − ξαξα(
R

2
− B) (8)

and then we substitute this into (5) and obtain the form for the curvature tensor

Rijkl = Φ(φiφlgjk − φiφkgjl + φjφkgil − φjφlgik) + (
R

2
− 2B)(gjkgil − gjlgik). (9)

Thus, a necessary condition is obtained for a pseudo-Riemannian space to be three-dimensional
and equidistant. Formulas (8) and (9) allow us to more effectively investigate objects of these
spaces, mappings, etc.
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Let D be a domain in the complex plane C, i.e., a connected and open subset of C, and let µ
and ν : D → C be a measurable functions with |µ(z)| + |ν(z)| < 1 a.e. (almost everywhere) in D.
We study the Beltrami equation with two characteristics

fz = µ(z)fz + ν(z)fz a.e. in D, (1)
where fz = (fx + ify)/2, fz = (fx − ify)/2, z = x+ iy, fx and fy are the partial derivatives of f by
x and y, respectively. The functions µ and ν are called the complex coefficients and

Kµ, ν(z) : =
1 + |µ(z)|+ |ν(z)|
1− |µ(z)| − |ν(z)|

the dilatation quotient for the equation (1).
Picking ν(z) ≡ 0 in (1), we arrive at the standard Beltrami equation of the form

fz = µ(z)fz. (2)
For the equation (2) we set

Kµ(z) =
1 + |µ(z)|
1− |µ(z)| .

Picking µ(z) ≡ 0 in (1), we arrive at the Beltrami equation of the second type
fz = ν(z)fz. (3)

For the equation (3) we set
Kν(z) =

1 + |ν(z)|
1− |ν(z)| .

Let z0 ∈ C and r > 0. We put B(z0, r) = {z ∈ C : |z − z0| < r}.
We say that a function ϕ : C → R has a global finite mean value at the point z0 ∈ C, abbr.

ϕ ∈ GFMV (z0), if
lim sup
R→∞

1

πR2

∫

B(z0,R)

|ϕ(z)| dxdy <∞.
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For homeomorphism f : C→ C we put

Lf (z0, r) = max
|z−z0|=r

|f(z)− f(z0)|, lf (z0, r) = min
|z−z0|=r

|f(z)− f(z0)|.

Theorem 1. Let µ and ν : C → C be a measurable functions with |µ(z)| + |ν(z)| < 1 a.e. and
f : C → C be a homeomorphic W 1,1

loc solution of the Beltrami equation (1), z0 ∈ C. Assume that
Kµ,ν ∈ GFMV (C) and

k∞ = k∞(z0) = sup
R∈(e,+∞)

1

πR2

∫

B(z0,R)

Kµ,ν(z) dxdy,

then

lim inf
R→∞

Lf (z0, R)

R p
⩾ c lf (z0, e),

where p = 2
e2k∞

and c = e
− 4

e2k∞ .

Picking ν(z) ≡ 0 in Theorem 1, we arrive at the following statement.
Theorem 2. Let µ : C → C be a measurable function with |µ(z)| < 1 a.e. and f : C → C be a
homeomorphic W 1,1

loc solution of the Beltrami equation (2), z0 ∈ C. Assume that Kµ ∈ GFMV (C)
and

k∞ = sup
R∈(e,+∞)

1

πR2

∫

B(z0,R)

Kµ(z) dxdy,

then

lim inf
R→∞

Lf (z0, R)

R p
⩾ c lf (z0, e),

where p = 2
e2k∞

and c = e
− 4

e2k∞ .

Letting µ(z) ≡ 0 in Theorem 1, we derive the following statement.
Theorem 3. Let ν : C → C be a measurable function with |ν(z)| < 1 a.e. and f : C → C be a
homeomorphic W 1,1

loc solution of the Beltrami equation (3), z0 ∈ C. Assume that Kν ∈ GFMV (C)
and

k∞ = sup
R∈(e,+∞)

1

πR2

∫

B(z0,R)

Kν(z) dxdy,

then

lim inf
R→∞

Lf (z0, R)

R p
⩾ c lf (z0, e),

where p = 2
e2k∞

and c = e
− 4

e2k∞ .
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There is a coordinate system in Minkowski space 1R4 for which the metric of the space has the
form ds2 = −dx21 + dx22 + dx23 + dx24. Let the equation r̄ = r̄(u1, u2) defines a two-dimensional
space-like surface F 2, the vectors ξ̄1, ξ̄2 are respectively its time-like and space-like normal vectors,
and gij, Lkij are respectively the coefficients of the first and second quadratic forms. The number
Hk = 1

2
gijLkij is called the mean curvature of the surface for the direction of the normal ξ̄k, and

the vector H = H1ξ̄1 +H2ξ̄2 is the mean curvature vector. Space-like surfaces of Minkowski space
with zero mean curvature vector will be called minimal surfaces, as in Euclidean space.

We plan to apply the concept of the indicatrix of the normal curvature of a surface to the
study of its differential geometry, in particular, the question of the existence of such surfaces with
some additional conditions on their Grassman image. The question of the existence of a time-like
minimal surface with a constant curvature of its Grassman image was solved in work [3].

At point x on a space-like surface F 2 each direction τ̄ ∈ TxF 2 corresponds to a normal curvature
vector k(τ̄) = (Prξ̄1 , r̄ss)ξ̄1+(Prξ̄2 , r̄ss)ξ̄2 = −(r̄ss, ξ̄1)ξ̄1+(r̄ss, ξ̄2)ξ̄2 = − II1

ds2
ξ̄1+

II2

ds2
ξ̄2, where r̄ss is the

curvature vector of the curve on the surface F 2 at the point x, which has the direction τ̄ , and the
scalar projections are defined by the formulas Prξ̄i , r̄ss = sign(ξ̄2i )

(r̄ss,ξ̄i)√
|ξ̄2i |

. When direction τ̄ rotates

in the tangent plane τ̄ ∈ TxF 2, the end P (− II1

ds2
; II

2

ds2
) of the vector r̄ss will form a curve, which we

will call the indicatrix of normal curvature by analogy with Euclidean space [1].
Let us move on to such parameterization u1, u2 of the surface, for which the metric tensor has

the form gij = δij. Next, we select a point (α, β), α = −L1
11+L

1
22

2
, β = −L2

11+L
2
22

2
in the plane Nx as

the origin of the coordinate system. The geometric meaning of this transfer is to move to a raper
with the origin in the center of the normal curvature indicatrix. Next, we choose normals ξ̄1, ξ̄2
parallel to the axes of the indicatrix, introduce the notations L1

11−L1
22

2
= a, L2

12 = b, and obtain
expressions for the coefficients of the second quadratic forms in the form L1

11 = −(α− a), L1
12 = 0,

L1
22 = −(α + a), L2

11 = β, L2
12 = b, L2

22 = β.
The Grassmann image of two-dimensional surfaces is an important geometric characteristic of

them. In [2] it is shown that the nondegenerate Grassmann image Γ2 of a surface of Minkowski
space is a two-dimensional surface p̄ = p̄(u1, u2), which belongs to the four-dimensional Grassmann
submanifold PG(2, 4) of the six-dimensional pseudo-Euclidean space 3R6 of index 3. Tangent
vectors to Γ2 can be written in the form p̄ui = −L1

ikg
kl[r̄l, ξ̄2]− L2

ikg
kl[ξ̄1, r̄l], l = 1, 2.

From the condition gijLkij = 0 of minimality of the surface it follows that α = β = 0. The metric
of the Grassmann image of the minimal space-like surface of the space 1R4 in the parameters of the
normal curvature indicatrix has the form ds2 = (a2−b2)2g11g22du1du2, and therefore the Grassmann
image of the surface is also a space-like surface. The formula for the sectional curvature of the
Grassmann image has the form K = −1 + 4a2b2

(a2−b2)2 and therefore it can take on values from the
interval (−1;+∞).
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To solve the problem of the existence of space-like minimal surfaces with a non-degenerate
Grassmann image of constant curvature K, it is necessary to prove that under this condition the
system of Gauss-Kodazzi-Ricci equations





R1212 = (a2 − b2)2g11g22,
(ag11)

′
u2 = b

√
g11g22µ12/1,

(ag22)
′
u1 = −b

√
g11g22µ12/2,

(b
√
g11g22)

′
u1 = −ag11µ12/2,

(b
√
g11g22)

′
u2 = ag11µ12/1,

(µ12/1)
′
u2 − (µ12/2)

′
u1 = −2ab

√
g11g22,

(1)

is compatible. Here µ12/i are the torsion coefficients.
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For the class of typically real in the unit disc of the complex plane polynomials, the results of
W. Rogosinski and G. Szegö [1] implies the sharp estimates for the second coefficient, however the
problem of finding the extremizers still open.

Within algebraic framework, we construct explicit polynomials which attain these bounds and
prove their uniqueness. The proof uses the Fejér-Riesz representation of nonnegative trigonometric
polynomials, a 7-band Toeplitz matrix of arbitrary finite dimension, and Chebyshev polynomials
of the second kind and their derivatives.
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Below dm(x) denotes the element of the Lebesgue measure in Rn. Everywhere further the bound-
ary ∂A of the set A and the closure A should be understood in the sense of the extended Euclidean
space Rn. Recall that, a Borel function ρ : Rn → [0,∞] is called admissible for the family Γ of
paths γ in Rn, if the relation ∫

γ

ρ(x) |dx| ⩾ 1

holds for all (locally rectifiable) paths γ ∈ Γ. In this case, we write: ρ ∈ admΓ. The modulus of Γ
is defined by the equality

M(Γ) = inf
ρ∈ admΓ

∫

Rn

ρn(x) dm(x) .

Let y0 ∈ Rn, 0 < r1 < r2 <∞ and
A = A(y0, r1, r2) = {y ∈ Rn : r1 < |y − y0| < r2} .

Given x0 ∈ Rn, we put B(x0, r) = {x ∈ Rn : |x − x0| < r} , Bn = B(0, 1) , S(x0, r) = {x ∈ Rn :
|x − x0| = r} . A mapping f : D → Rn is called discrete if the pre-image {f−1 (y)} of any point
y ∈ Rn consists of isolated points, and open if the image of any open set U ⊂ D is an open set
in Rn. Given sets E, F ⊂ Rn and a domain D ⊂ Rn we denote by Γ(E,F,D) the family of all
paths γ : [a, b] → Rn such that γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ D for t ∈ (a, b). Given a mapping
f : D → Rn, a point y0 ∈ f(D) \ {∞}, and 0 < r1 < r2 < r0 = sup

y∈f(D)

|y − y0|, we denote by

Γf (y0, r1, r2) a family of all paths γ in D such that f(γ) ∈ Γ(S(y0, r1), S(y0, r2), A(y0, r1, r2)). Let
Q : Rn → [0,∞] be a Lebesgue measurable function. We say that f satisfies the inverse Poletsky
inequality at a point y0 ∈ f(D) \ {∞} if the relation

M(Γf (y0, r1, r2)) ⩽
∫

A(y0,r1,r2)∩f(D)

Q(y) · ηn(|y − y0|) dm(y) (1)

holds for any Lebesgue measurable function η : (r1, r2)→ [0,∞] such that
r2∫

r1

η(r) dr ⩾ 1 . (2)

The relations (1) are proved for different classes of mappings, see e.g. [1].
Set qy0(r) = 1

ωn−1rn−1

∫
S(y0,r)

Q(y) dHn−1(y), where ωn−1 denotes the area of the unit sphere Sn−1

in Rn. We say that a function ϕ : D → R has a finite mean oscillation at a point x0 ∈ D, write
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ϕ ∈ FMO(x0), if lim sup
ε→0

1
Ωnεn

∫
B(x0, ε)

|ϕ(x)−ϕε| dm(x) <∞, where ϕε = 1
Ωnεn

∫
B(x0, ε)

ϕ(x) dm(x) and

Ωn is the volume of the unit ball Bn in Rn. We also say that a function ϕ : D → R has a finite
mean oscillation at A ⊂ D, write ϕ ∈ FMO(A), if ϕ has a finite mean oscillation at any point
x0 ∈ A. Let h be a chordal metric in Rn,

h(x,∞) =
1√

1 + |x|2
, h(x, y) =

|x− y|√
1 + |x|2

√
1 + |y|2

, x 6=∞ 6= y ,

and let h(E) := sup
x,y∈E

h(x, y) be a chordal diameter of a set E ⊂ Rn (see, e.g., [2, Definition 12.1]).

Theorem 1. Let D be a domain in Rn, n ⩾ 2, and let fj : D → Rn, j = 1, 2, . . . , be a sequence of
homeomorphisms that converges to some mapping f : D → Rn locally uniformly in D by the metric
h, and satisfy the relations (1)–(2) in each point y0 ∈ Rn. Assume that one of two conditions holds:
1) Q ∈ FMO(Rn), or
2) for any y0 ∈ Rn there exist ε1(y0) > 0 and δ(y0) > 0 such that

δ(y0)∫

ε

dt

tq
1

n−1
y0 (t)

<∞ ∀ ε ∈ (0, ε1(y0)),

δ(y0)∫

0

dt

tq
1

n−1
y0 (t)

=∞ . (3)

Then f is either a homeomorphism f : D → Rn, or a constant c ∈ Rn.

Here the conditions mentioned above for y0 = ∞ must be understood as conditions for the
function Q̃(y) := Q(y/|y|2) at the origin. We should note that the second condition in (3) is not
only a sufficient but also a necessary condition in Theorem 1. The following conclusion holds.

Theorem 2. Let Q : Rn → [0,∞] be locally integrable function such that
δ(y0)∫

0

dt

tq
1

n−1
y0 (t)

<∞

for some y0 ∈ Rn and δ(y0) > 0. Then there exists a sequence of homeomorphisms fj : D → Rn,

j = 1, 2, . . . , satisfying the relations (1)–(2) at y0 which converges to some mapping f : D → Rn

locally uniformly in D by the metric h, which is neither a homeomorphism nor a constant.
The results mentioned above are published in [3].
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We investigate the claim that a compact surface Σ with boundary ∂Σ, embedded in a manifold
M , is area minimizing among all surfaces with the same boundary if it satisfies a ”total convexity”
property. This problem connects methods from geometric analysis and algebraic geometry. We
clarify two main interpretations of total convexity: intrinsic (geodesic) and extrinsic (ambient).
Under the intrinsic definition, we demonstrate the claim is false using the counterexample of a
spherical cap. For the extrinsic definition which implies Σ is a convex domain in a totally geodesic
submanifold P ⊂ M the claim holds in Euclidean space (proven via calibration using differential
forms) and is generally true for hypersurfaces in Riemannian manifolds where stability analysis is
more tractable. However, it can fail in higher codimension due to more complex stability criteria.
We provide justifications, citing known counterexamples from minimal surface theory, particu-
larly those in normed spaces, which underscore the subtleties. Connections to rigidity problems
are briefly explored, highlighting how specific geometric and algebraic structures might enforce
uniqueness.

Anabelian geometry in arithmetic topology
Jun Ueki

(Department of Mathematics, Ochanomizu University; Tokyo, Japan)
E-mail: uekijun46@gmail.com

This talk is based on a joint work with Nadav Gropper and Yi Wang [GUW25].
The analogy between knots and primes, or 3-manifolds and the ring of integers of number fields,

has been systematically developed by Mazur [Maz64, Maz12], Kapranov [Kap95], Reznikov [Rez97,
Rez00], Morishita [Mor02, Mor12, Mor24], Kim [Kim20], and others. In their spirit of arithmetic
topology, we have formulated in [Nii14, NU19] an analogue of Artin–Takagi–Chevalley’s idelic class
field theory that sums up all local theories to describe all abelian branched covers of a 3-manifoldM
endowed with a certain infinite link K. Successive studies are [Mih19, NU23, Tas25b, Tas25a]. In
addition, analogues of the set of all primes have been studied in [Maz12, McM13, Uek20, Uek21a,
Uek21b].

Extending this context, we may discuss an analogue of so-called anabelian geometry, whose initial
fundamental result is the classical Neukirch–Uchida theorem stated as follows.
Theorem 1 (Neukirch [Neu69b, Neu69a], Uchida [Uch76], see also [NSW08, Theorem 12.2.1]).
Let Q be an algebraic closure of Q. Let E,F be number fields, that is, finite extensions of Q in
Q. If there is an isomrphism ϕ : Gal(Q/E)

∼=→ Gal(Q/F ) of topological groups, then there uniquely
exists a natural isomorphism E

∼=→ F , that is, there is a unique σ ∈ AutQ such that F = σ(E) and
σ induces ϕ.

In the proof, the Hilbert ramification theory for infinite Galois extensions, the Poiteau–Tate
duality, and the Chebotarev density theorem play key roles. One of the main steps is to prove the
following.
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Theorem 2 ([NSW08, Theorem 12.2.5]). Let F/Q be a finite Galois extension and E/Q a finite
extension. If all primes p ∈ Q with a prime factor of degree 1 in E/Q completely decompose in
F/Q, then F ⊂ E.

Now letM be an oriented connected closed 3-manifold with a base point bM and letK =
⋃
i∈Z≥0

Ki

be an infinite link consisting of countably many tame components. Let Cov(M,K) denote the set
of all branched covers branched along finite sublinks of K. We define the absolute Galois group
of (M,K) by Gal(M,K) = lim←−h∈Cov(M,K)

Galh = lim←−L⊂K π̂1(M − L), where π̂1 denotes the profinite
completion of π1. Then, we may formulate the Hilbert ramification theory for pro-covers [GUW25].
Suppose in addition thatK obeys the Chebotarev law. Then it turns out that for any h ∈ Cov(M,K),
the inverse image h−1(K) is again Chebotarev [GUW25]. An analogue of Theorem 1 may be stated
as follows.
Theorem 3 ([GUW25]). Let the setting be as above. Let G1, G2 be open subgroups of Gal(M,K)
and let h1, h2 ∈ Cov(M,K) denote the corresponding branched covers. If there is an isomorphism
ϕ : G1

∼=→ G2 of topological groups, then there uniquely exists a natural isomorphism h1 ∼= h2 of
branched covers, that is, there is a unique σ ∈ Gal(M,K) such that h2 ◦ σ = h1 and σ induces ϕ.

An analogue of the key step is as follows.
Theorem 4 ([GUW25]). Let h1, h2 ∈ Cov(M,K) and suppose that h1 is Galois. If all knots K ⊂ K
whose inverse image h−1

2 (K) has a component of covering degree 1 in h2 completely decompose in
h1, then h1 is a subcover of h2.

Once the theorem’s statement comes into view, in the context of research aiming to systematize
analogies, numerous problems to be addressed in the future become apparent. In the topology side,
the classical Mostow rigidity assures that hyperbolic manifolds are determined by their fundamental
groups. In addition, in recent days, profinite rigidity has been of great interest [Rei18, BJZR23].
But we believe that rigidity for such a large group Gal(M,K) is a new viewpoint and would be of
interest, even away from the context of the analogy.
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Let K be a commutative ring with the unity. Jordan-Gauss graph over K is an incidence
structures with partition sets P (points) and L (lines) isomorphic to affine spaces V1 and V2 over K
such that the incidence relation is given by special quadratic equations over the commutative ring
K with unity such that the neighbour of each vertex is defined by the system of linear equation
given in its row-echelon form.

We assume that Vi, i = 1, 2 are finite dimensional spaces of kind Kn or infinite dimensional affine
spaces formed tu tuples with finite support.

Let Γ be an incidence system with partition sets Γi, i = 1, 2, . . . ,m and incidence relation I.
We say that equivalence τ on Γ is Jordan-Gauss equivalence over K if each equivalence class is an
affine space over this ring, each Γi is a union of these equivalence classes and the restriction of I
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on the union of two such classes consisting of elements of different types is a Jordan-Gauss graph
or empty relation.
Theorem 1. Let F be a field, G(F ) be a Kac-Moody group and Γ(G(F )) be a Kac - Moody
geometry of G(F ). Then there is Jordan-Gauss equivalence on Γ(G(F )) defined over F . Totality of
equivalence classes of this relation is in one to one correspondence with elements of corresponding
Weyl geometry.

The theorem is the corollary of the results presented in [1], [2].
Let B+ and B− be Borel subgroups containing root subgroups corresponding positive and neg-

ative roots respectively. Let Pi, i = 1, 2, . . . ,m are standard maximal parabolic subgroups, i. e
maximal subgroups of G containing B+. The geometry Γ(G(F )) is the disjoint union of (G(F ) : Pi)
with the type function t(gPi) = i and incidence relation I : αIβ if and only if α∩β is not an empty
set. Orbits of B− form the classes of Jordan-Gauss equivalence relation.

Jordan-Gauss graph is the special case of linguistic graph given by the following way. We identify
points with tuples of kind (x) = (x1, x2, . . . , xn, . . . ) and lines with tuples [y] = [y1, y2, . . . , yn, . . . ].
Brackets and parenthesis are convenient to distinguished type of the vertex of the graph. Elements
(x) and [y] are incident (x)I[y] if and only if the following relations hold.
a1xs+1 − b1yr+1 = f1(x1, x2, . . . , xs, y1, y2, . . . , yr),
a2xs+2 − b2yr+2 = f2(x1, x2, . . . , xs, xs+1, y1, y2, . . . , yr, yr+1),
. . .
amxs+m − bmyr+m = fm(x1, x2, . . . , xs, xs+1, . . . , xs+m−1, y1, y2, . . . , yr, yr+1, . . . , yr+m−1)
…
where aj and bj, j = 1, 2, . . . ,m are not zero divisors, and fj are multivariate polynomials with

coefficients from K.
Linguistic graph given by the written above equations is Jordan – Gauss graph if the map sending

the pair ((x1, x2, . . . , xn, . . . ), (y1, y2, . . . , yn, . . . )) to (f1, f2, . . . , fm, . . . ) is a bilinear one.
We use the interpretations of geometries Γ(G(F )) to define their analogues Γ(G(K)) where K

is arbitrary commutative ring with unity. The walks on incidence structures Γ(G(K) and natural
colourings of their Jordan - Gauss graphs are used for the design of explicit constructions of groups
supporting the following statement of Computational Algebraic Geometry.
Theorem 2. Let K be commutative ring with unity. For each positive integer n, d, d ≥ 2 and
rational parameter s ≥ 0 there is a subgroup H of affine Cremona semigroup of all endomorphisms
of K[x1, x2, . . . , xn] such that maximal degree of representative of H is d and the densities of
elements from H are of size O(ns).

Recall that degree and density of endomorphism F of K[x1, x2, . . . , xn] is defined as maximal
values of degrees and densities of standard forms of polynomials F (xi), i = 1, 2, . . . , n. For each
commutative ring K with unity and selected positive integer d, d > 1 and rational parameter s,
d ≥ s > 0 we construct polynomial bijective map F of Kn onto Kn of degree d, density O(ns) with
the computational accelerator T which is the piece of information such that its knowledge allows
to compute the reimage of F in time O(n2).

During the talk some applications of these results to Computational Algebraic Geometry the
Theory of Communications will be described (see [3]).
Acknowledgements: This research is partially supported by British Academy Fellowship for Re-

searchers under Risk 2022.
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In [3], L. P. Nizhnik studied the integration of multidimensional nonlinear equations using the
inverse scattering method. Therein, the system

wt = k1wxxx + k2wyyy + 3(v1w)x + 3(v2w)y, v1y = k1wx, v2x = k2wy (1)
known now as the Nizhnik system was introduced. It has two parameters, k1 and k2 with (k1, k2) 6=
(0, 0), but the only thing that matters is whether the product k1k2 is zero (the asymmetric case)
or not (the symmetric case). Introducing potentials in the system (1) and/or taking limits with
respect to a small scaling parameter, we can derive various related models,

• the (symmetric potential) Nizhnik equation utxy = uxxxxy+uxyyyy+3(uxxuxy)x+3(uyyuxy)y,
• the asymmetric (potential) Nizhnik equation uty = uxxxy+3(uxuy)x (also called the Boiti–
Leon–Manna–Pempinelli equation [1]),
• the (symmetric) dispersionless Nizhnik system wt = (v1w)x + (v2w)y, v1y = wx, v2x = wy,
• the (symmetric potential) dispersionless Nizhnik equation

utxy = (uxxuxy)x + (uxyuyy)y, (2)
• the asymmetric dispersionless Nizhnik system wt = (v1w)x, v1y = wx,
• the asymmetric (potential) dispersionless Nizhnik equation uty = (uxuy)x.

The results from [2] on point symmetries of the equation (2) created a basis for a comprehensive
classification of its Lie reductions to partial differential equations with two independent variables
and to ordinary differential equations, which was carried out in [5]. The list of inequivalent one-
dimensional subalgebras of the maximal Lie invariance pseudoalgebra g of (2) presented in [5]
includes, in particular, the family of subalgebras sρ1.3 =

〈
P x(1) + P y(ρ)

〉
, where ρ = ρ(t) is an

arbitrary smooth function of t satisfying the inequalities ρ(t) 6= 0 for all t in its domain and ρ 6≡ 1
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on any open interval within that domain. The optimal ansatzes constructed with respect to these
subalgebras reduce the equation (2) to partial differential equations in two independent variables
that share the same form

w122 + w22w222 = 0. (3)
It is easy to see that the substitution w22 = h maps the equation (3) to the inviscid Burgers
equation

h1 + hh2 = 0. (4)
The equation (3) is the most interesting and fruitful submodel of (2), in particular, in the sense of

its relation to hidden symmetry-like objects of (2). In [4], we found all local symmetry-like objects
associated with the equation (3), including generalized symmetries, cosymmetries, conservation-
law characteristics and conservation laws, and most of them are hidden for (2). This represents
the first comprehensive study of such objects for a submodel of a well-known system of differential
equations. Complete descriptions even of particular kinds of such objects in nontrivial cases exist
in the literature only for a minor part of these systems themselves, not to mention submodels.
Moreover, a complete description of all the local symmetry-like objects of a model in a single paper
is rather exceptional.

Standard techniques like recursion operators and the estimation of the dimension of the space
of objects in question up to an arbitrary fixed order do not work for the equation (3). Even the
best computer packages for finding local symmetry-like objects such as Jets and GeM for Maple
are inefficient at computing such objects for this equation even at low orders, starting from order
three. This can be explained by the fact that for local symmetry-like objects of any specific kind,
the corresponding space of them for the equation (3) is of complicated structure. In particular,
they are parameterized by functions of arbitrary finite number of arguments that are cumbersome
differential expressions.

To illustrate the above claims, here we present only the description of generalized symmetries
of (3).
Theorem 1. A differential function f{w} is the characteristic of a generalized symmetry of the
equation (3) if and only if it is a linear combination of the differential functions

w1,0, z1w1,0 + w0,0, z21w1,0 + z1z2w0,1 − z1w0,0 −
1

6
z 3
2 ,

w0,1, 2z1w0,1 − z 2
2 , z2w0,1 − 3w0,0, ğ, z2g,

w0,2

w1,2θ2
(f̆w0,2 − θk+1f̆θk) + f̆ ,

(w0,2)
3

2w1,2

(θ1)2

θ2
+

1

6
z21(w0,2)

3 + z1w1,0,
2

3

(w0,2)
4

w1,2

(θ1)2

θ2
+

1

6
z21(w0,2)

4 + z2w1,0 − z22ζ10,

2
(w0,2)

3

w1,2

(θ1)2

θ2
θ0 +

2

3
z21(w0,2)

3θ0 +
1

6
z31(w0,2)

4 + z2w0,0 − z22w0,1 − z1z2w1,0 + z1z
2
2ζ

10.

Here wk,l := ∂k+lw/∂z k1 ∂z
l
2, g and ğ are arbitrary functions of z1 and a finite number of ζ ik, the f̆

is an arbitrary function of w0,2 and a finite number of θk, k, l ∈ N0, i = 1, 2,

ζ ik := D k
1 I

i, θk :=

(
w0,2

w1,2

D̂2

)k
(z2 − w0,2z1),

I1 := w1,1 +
1

2
(w0,2)

2, I2 := w2,0 −
1

3
(w0,2)

3 − z2(w2,1 + w0,2w1,2) = w2,0 −
1

3
(w0,2)

3 − z2D1I
1,
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D1 and D2 denote the operators of total derivatives with respect to the variables z1 and z2, and D̂2

is the restriction of D2 to solutions of (3),

D̂2 = ∂z2 + w0,1∂w0,0 +

(
ζ10 − 1

2
(w0,2)

2

)
∂w1,0 + w0,2∂w0,1 − D̂k

1

(
w1,2

w0,2

)
∂wk,2

.
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Let C and p be a reduced singular curve over C and its singular point respectively. We refer to
the germ of C at p as a curve singularity and denote it by (C, p). Let K0(VarC) be the Grothendieck
ring of complex algebraic varieties.

For a reduced curve singularity (C, p), the motivic Hilbert zeta function with support at p is
defined as

ZHilb
C,p (t) :=

∞∑

l=0

[C [l]
p ]t

l ∈ 1 + tK0(VarC)[[t]] (1)

where C [l]
p consits of length l subschemes of C supported at p. It is known that ZHilb

C,p (t) is rational
(see [1]). We refer to C [l]

p as the punctual Hilbert scheme of degree l for the given curve singularity
(C, p). In this talk, we consider the following assumtion:

Assumption 1. For a given curve singularity (C, p), any punctual Hilbert scheme C [l]
p admits an

affine cell decomposition.
Remark 2. It is known that any irreducible plane curve singularity with one Puiseux pair satisfies
Assumption 1 (see [6]).

Let L denote the class of the affine line A1 in K0(VarC).
Lemma 3. Let (C, p) be a reduced curve singularity that satisfies Assumption 1. Then the class
[C

[l]
p ] in K0(VarC) is a polynomial in C[L]. Furthermore, the Euler number χ(C [l]

p ) is equal to the
number of affine cells of C [l].



118

By Lemma 3, we see that the motivic Hilbert zeta function (1) is an element of C[L][[t]] under
Assumption 1. Therefore, instead of ZHilb

C,p (t), we use the notation ZHilb
C,p (t,L).

Theorem 4. Let (C, p) be a reduced curve singularity. If Assumption 1 holds, then we have

ZHilb
C,p (q, 1) =

∞∑

l=0

χ(C [l]
p )q

l

where χ(C [l]
p ) is the Euler number of C [l]

p .
Let Γ be a semigroup and let Mod(Γ) denote the set of all Γ-semimodules. For a Γ-semimodule

∆, we define its codimension by codim(∆) := #(Γ \ ∆). The generating function I(Γ; q) of Γ-
semimodules is defined to be

I(Γ; q) :=
∑

∆∈Mod(Γ)
qcodim(∆).

Theorem 5. For an irreducible curve singularity (C, p) with one Puiseux pair, the following realtion
holds:

ZHilb
C,p (q, 1) = I(Γ; q)

Using our results, we clarify the relations among Motivic Hilbert zeta functions and other in-
variants. Below we focus on reduced plane curve singularities. Let P (LC,p) be the HOMFLY
polynomial of the oriented link LC,p associated with (C, p). The following relation was conjectured
by Oblomkov and Shende in [4] and was finally proved by Maulik in [3]:

∞∑

l=0

χ(C [l]
p )q

2l =
(q
a

)µ−1

P (LC,p)
∣∣∣
a=0

(2)

On the other hand, Shende [5] also proved the relation
∞∑

l=0

χ(C [l]
p )q

l =
δ∑

l=0

qδ−l(1− q)2h−1degpVh (3)

where δ is the delta invariant of (C, p) and Vh’s are the severi strata of the miniversal deformation
of (C, p).

Consequently, the following fact follows from Theorem4 and 5, along with the relations (2) and
(3).
Theorem 6. Here notations remain the same as above. If (C, p) is an irreducible plane curve
singularity with one Puiseux pair, then we have

ZHilb
C,p (q

2, 1) = I(Γ; q2) =
(q
a

)µ−1

P (LC,p)
∣∣∣
a=0

, (4)

ZHilb
C,p (q, 1) = I(Γ; q) =

δ∑

l=0

qδ−l(1− q)2h−1degpVh. (5)

Remark 7. The equivalence of the HOMFLY polynomial and the generating function of Γ-
semimodules I(Γ; q) in (4) was pointed out by Chavan ([2]).

REFERENCES
[1] D. Bejleri, D. Rangnathan and R. Vakil, Motivic Hilbert zeta functions of curves are rational, Dule Math. J. 97

(1999), 99–108.
[2] P. Chavan, Counting ideals in numerical semigroups, arXiv:2304.13690v1.



119

[3] D. Maulik, Stable pairs and the HOMFLY polynomial, Ivent, Math, 204 (2016), no. 3, 787-831.
[4] A. Oblomkov and V. Shende, The Hilbert scheme of a plane curve singularity and the HOMEFLY polynomial of

its link, Duke Math. J. 161 (2012), no. 7, 1277-1303.
[5] V. Shende, Hilbert schemes of points on a locally planar curve and the Severi strata of its versal deformation,

Compos. Math. 148 (2) (2012), 531–547.
[6] M. Watari, Topology of the punctual Hilbert schemes of plane curve singularities with one Puiseux pair, preprint.

Balayage in minimum Riesz energy problems with external
fields

Natalia Zorii
(Institute of Mathematics of NASU, Tereshchenkivska 3, 02000, Kyiv, Ukraine)

E-mail: zorii@imath.kiev.ua

This talk deals with a minimum energy problem in the presence of external fields on Rn, n ⩾ 2,
the energy being evaluated with respect to the α-Riesz kernel κα(x, y) := |x−y|α−n, where α ∈ (0, n)
and α ⩽ 2. (Here |x − y| is the Euclidean distance between x, y ∈ Rn.) For precise formulations,
we denote by M the linear space of all (real-valued Radon) measures µ on Rn, equipped with
the vague topology of pointwise convergence on the continuous functions ϕ : Rn → R of compact
support, and by M+ the cone of all positive µ ∈M. Given µ, ν ∈M, we define the mutual energy
and potential by means of

I(µ, ν) :=

∫
κα(x, y) d(µ⊗ ν)(x, y) and Uµ(x) :=

∫
κα(x, y) dµ(y), x ∈ Rn,

respectively, provided the value on the right is well defined as a finite number of ±∞. For µ = ν,
I(µ, ν) defines the energy I(µ) := I(µ, µ). A crucial fact is that κα is strictly positive definite in
the sense that for any µ ∈M, I(µ) is ⩾ 0 whenever defined, and moreover I(µ) = 0 ⇐⇒ µ = 0.
This implies that all µ ∈ M with I(µ) < ∞ form a pre-Hilbert space E with the inner product
〈µ, ν〉 := I(µ, ν) and the norm ‖µ‖ :=

√
I(µ). The topology on E defined by ‖ · ‖ is said to be

strong. Moreover, κα is perfect, which means that the cone E+ := E ∩M+ is strongly complete,
while the strong topology on E+ is finer than the induced vague topology on E+. (See Landkof’s
book [3] and historical notes therein.)

Fixing A $ Rn, we denote by E+(A) the class of all µ ∈ E+ concentrated on A, which means that
Ac := Rn \ A is µ-negligible. (For closed A, E+(A) consists of all µ ∈ E+ with support S(µ) ⊂ A.)
Also fix an external field f := −Uϑ, where ϑ ∈ M+ is given. The problem in question is that
on minimizing the Gauss functional If (µ), which sometimes is also referred to as the f -weighted
energy, where

If (µ) := ‖µ‖2 + 2

∫
f dµ = ‖µ‖2 − 2I(µ, ϑ)

and µ ranges over E1(A) :=
{
µ ∈ E+(A) : µ(Rn) = 1

}
. That is, does there exist λA,f ∈ E1(A) with

If (λA,f ) = inf
µ∈E1(A)

If (µ)? (1)

The investigation of this problem, initiated by Gauss, is still of interest due to its important
applications in various areas of mathematics (see e.g. Saff and Totik [5] and numerous references
therein).

If A := K is compact while f |K is finitely continuous, then λK,f does exist, for If (·) is vaguely
lower semicontinuous, whereas E1(K) is vaguely compact [1, Section III.1, Corollary 3 to Proposi-
tion 15]. However, these arguments, based on the vague topology only, fail down if A is noncompact,
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and the problem becomes ”rather difficult” (Ohtsuka [4, p. 219]). To examine problem (1) for non-
compact A, we developed an approach based on the perfectness of κα, whence on both the strong
and vague topologies on E (see [10, 11]). To this end, we need to impose on A and ϑ the following
three requirements:
• The cone E+(A) is strongly closed, whence strongly complete. (As shown in [10, Theorem 3.9],

this in particular holds if A is closed or even quasiclosed. By Fuglede [2], the latter means that
A can be approximated in outer capacity by closed sets. For the concepts of outer and inner
capacities, see e.g. Landkof [3, Section II.2.6]. It is worth noting here that a quasiclosed set is not
necessarily Borel.)
• c∗(A) > 0, where c∗(·) stands for the inner capacity of a set; or equivalently E1(A) 6= ∅.
• ϑ ∈M+ is bounded, i.e. ϑ(Rn) <∞, and moreover

inf
(x,y)∈S(ϑ)×A

|x− y| > 0.

Then, the inner κα-balayage ϑA of ϑ to A can be defined as the unique bounded measure in
E+(A) such that UϑA = Uϑ n.e. on A, i.e. on all of A except for a set with c∗(·) = 0; see [10,
Theorem 4.7(iii1)]. (For the general theory of inner κα-balayage, we refer to [6, 7], cf. also [8, 9].)
This implies that If (·) is strongly continuous on E+(A), which is crucial to the analysis of problem
(1), performed in [10, 11].
Theorem 1 (see [11, Theorem 2.6]). For λA,f to exist, it is necessary and sufficient that

c∗(A) <∞ or ϑA(Rn) ⩾ 1. (2)
By [7, Definition 2.1], Q ⊂ Rn is said to be not inner α-thin at infinity if

∑

j∈N

c∗(Qj)

qj(n−α)
=∞,

where q ∈ (1,∞) and Qj := Q∩
{
y ∈ Rn : qj < |y| ⩽ qj+1

}
. The inner κα-balayage of any µ ∈M+

to such Q preserves its total mass [7, Corollary 5.3], whence the following corollary to Theorem 1
holds.
Corollary 2. If A is not inner α-thin at infinity, then λA,f exists if and only if ϑ(Rn) ⩾ 1.
Theorem 3 (see [11, Theorem 2.10]). Assume (2) is fulfilled, and moreover ϑA(Rn) ⩽ 1. Then

λA,f =

{
ϑA + cA,fγA if c∗(A) <∞,

ϑA otherwise, (3)

where cA,f ∈ [0,∞), while γA is the inner κα-equilibrium measure on A, normalized by γA(Rn) =
c∗(A).

For the inner κα-equilibrium measure on the set A in question, see [9, Theorem 7.2] with κ := κα.
In the following Theorems 4 and 5, A is assumed to be closed. The reduced kernel Ǎ of A is the

set of all x ∈ A such that c∗(A ∩ Ux) > 0 for any neighborhood Ux of x in Rn, cf. [3, p. 164].
Theorem 4 (see [11, Theorem 2.11]). Under the requirements of Theorem 3, assume moreover
that Ac is connected unless α < 2. Then, by virtue of the representation (3) and [6, Theorems 7.2,
8.5],

S(λA,f ) =

{
Ǎ if α < 2,

∂RnǍ otherwise.
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Theorem 5 (see [10, Theorem 2.22]). If A is not α-thin at infinity and δ(Rn) > 1, then S(λA,f ) is
compactly supported in A. (Compare with Theorem 4. Note that λA,f does exist, see Corollary 2.)

Theorems 4, 5 give an answer to the question raised by Ohtsuka in [4, p. 284, Open question 2.1].
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